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Abstract—Traffic monitoring is one of the key challenges in In-
telligent Transportation Systems (ITS). In this paper, we propose
to build a crowdsourcing application for traffic monitoring. The
novelty of the proposed approach is that visual data is collected
to enable automatic event inference with the recent advance in
Computer Vision. The challenge is that mobile devices are not
capable of handling visual task processing in high accuracy. We
propose to build a networked system so that mobile devices can
offload data via available wireless access interfaces (e.g., 4G LTE,
WiFi, DSRC) to edge servers, e.g., GENI Rack. We plan to use the
testbed at Kettering University to validate the proposed approach.

Index Terms—Spatial crowdsourcing, Intelligent Transporta-
tion Systems, Edge Computing

I. INTRODUCTION

Traffic monitoring is a key task in Intelligent Transporta-
tion Systems (ITS). Most existing monitoring systems are
infrastructure-based systems, deploying dedicated traffic sen-
sors, e.g., cameras, radars, etc., at fixed locations. However,
infrastructure-based systems are very expensive, and thus
sensors are only deployed in highways, major urban streets,
and large intersections. For example, a radar speed sign will
cost around $3000 [1]. As a result, these systems cannot collect
sufficient traffic information, particularly for large urban areas
consisting primarily of smaller streets.

Nowadays, crowdsourcing-based navigation applications,
e.g., Google Map [2] and Waze [3], are widely used by drivers.
Drivers usually mount smartphones on the windshield before
driving and get real-time updates during their trip. One of the
significant advantages is that navigation apps utilize millions
of users (i.e., crowds) to collect traffic information. Compared
with the infrastructure-based systems, navigation apps collect
traffic-related data from all running users and thus have roads’
traffic information on major streets and smaller streets. For
instance, Waze builds a live map where a Waze user can report
real-time traffic information, e.g., accidents, road hazards,
traffic jams, so that other Waze users can further calculate
the fastest route based on the real-time traffic updating [3].

In this abstract, we propose a traffic monitoring crowd-
sourcing system, i.e., AutoWaze, which utilizes the mounted
smartphone in the windshield to collect visual data. The
collected visual data can be analyzed automatically with Com-
puter Vision technique to support real-time traffic monitoring
and safety-related alerts in intelligent transportation systems.
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Fig. 1. Detection results of four object detection models

As a result, it addresses several drawbacks of navigation
applications with the human operation (e.g., Waze). First,
reporting traffic-related events by drivers manually can be
distracting, and thus, it is not safe. According to [4], as a
user reporting an event currently needs some screen time, even
two seconds on the phone can cost a driver loss of attention
for ∼30 meters (assuming 60 km/hour speed). Second, it will
be tough for a driver to report events in complicated road
condition. Third, there are only several categories and thus,
the information provided by the crowds is limited.

II. RESEARCH PLAN

A. Challenges

The major challenge of using visual data is due to weak
computation power of smartphones. The reason is that the
actual road situation might be extremely complicated. To fully
understand the current case, we need to hand-code millions of
variables in real-time. Notably, the weak computation power
of the smartphone cannot handle traffic detection in a real-time
manner and thus limits us from developing more sophisticated
applications. We ran some tests by using four state-of-the-
art object detection models on a Traffic CCTV camera in
Bangkok Thailand [5] and the results are shown in Fig. 1. The
SSD MobileNet simply detect nothing in a complex scenario.
However, according to [6], mobile devices can only handle
lightweight object detection models, e.g., SSD MobileNet and
SSD Inception rather than more sophisticated models, e.g.,
Faster R-CNN Inception and Faster R-CNN NAS.978-1-7281-2700-2/19/$31.00 2019 c© IEEE



TABLE I
A COMPARISON BETWEEN THE PROPOSED APPROACH WITH THE EXISTING APPROACH

Collected data Comm. Interface Advantage Challenges Human interaction
Google Map GPS, cellular data Cellular small data size high estimation error No
Waze GPS, cellular data,

human event report
Cellular small data size driver distraction,

limited event category
Yes

AutoWaze Visual Data, GPS, ve-
hicle sensor readings

Cellular, WiFi,
DSRC, etc.

fine-grained descrip-
tion, automatic event
recognition

Big data size, weak
phone computation
power

No
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Fig. 5. Experimental setups of (left) a roadside AP and (right) a vehicular
rogue AP.

V. EVALUATION

Here, we present our experimental setup, the methodology,
and the experimental results, which attempt to answer the fol-
lowing questions: 1) What is the performance of both basic al-
gorithm and advanced algorithm working in practice? 2) What
is the time cost of determining whether an AP is a rogue AP?
3) How does the speed of a vehicle affect the performance?

A. Experimental Setup and Methodology

The devices used in our experiments are comprised of a
roadside AP, a vehicular rogue AP, and a vehicular client.

Roadside AP: A commercial outdoor AP (Deliberant CPE
2-12) was configured as a roadside AP. The specification of this
model can be found in [26]. The AP was mounted on top of a
tripod that is 2 m high (see Fig. 5, left side). When deploying the
AP alongside the road, we used a GPS receiver (GlobalSat BU-
353) to measure its physical location. To enable broadcasting
the GPS information via beacons, we loaded the AP with
OpenWrt [27] firmware and a modified Wi-Fi driver. The extra
content in each beacon has 18 B including 1-B element ID, 1-B
length, 8-B latitude, and 8-B longitude.

Vehicular Rogue AP: A laptop connected with an exter-
nal omniantenna and a GPS receiver (see Fig. 5, right side)
mounted on the roof of a car was configured as a vehicular
rogue AP. The laptop was running a 2.6.27-generic Linux
kernel with madwifi driver (svn r4128). Similar to the roadside
AP, we modified the madwifi driver to support GPS broadcast.
We did not set up the Internet access for all APs since it
does not affect the performance of our algorithms. In ba-
sic attacks, we fixed the TX power by executing command
iwconfigtxpower[value] with the maximum power value.
In advanced attacks, we tried to automatically adjust TX power
to mimic the real trend of RSS values, but eventually, we
found that it was really difficult to make it work in practice.
Most of the time, the rogue AP could be detected by our basic
algorithm. To ease evaluation, we optimistically assume that the
rogue AP can bypass our basic algorithm, and we investigate
the advanced algorithm without changing the TX power of the
AP. This is correct since our algorithm does not rely on any
configuration of APs.

TABLE II
EQUIPMENT DESCRIPTION

Vehicular Client: The vehicular client used the same hard-
ware as the vehicular rogue AP. The Wi-Fi interface of the client
was set to monitor mode, which could capture all the packets in
air. Injecting and receiving packets were achieved by libpcap.
The control of per-packet TX power and TX rate was done by a
radiotap header. In Linux, the IEEE 802.11 MAC layer allows
arbitrary injected packet composed in the following format:

[radiotap header] + [ieee80211 header] + [payload].

IEEE80211_RADIOTAP_RATE and IEEE80211_RADIOTAP_
DMB_TX_POWER in the radiotap header are used to control the
data rate and the TX power of injected packets. Given different
values, a packet can be transmitted with the desired power and
data rate. Note that to control per-packet TX power hal_tpc
must be enabled while loading the madwifi module. Table II
summarizes all the equipment used in our experiments.

The experiments were conducted in a suburb an area, where
we could freely drive along the road and stop to collect mea-
surements. In the experiments, the roadside AP was placed
in a parking lot around 60 m away from the road. Two cars
configured to be a vehicular rogue APs and a vehicular client
were driven along the road passing through the roadside AP.
The roadside AP broadcast its actual GPS location, and the
rogue AP broadcast a location close to the roadside AP. We
took two sets of experiments to evaluate our vehicular rogue
AP detection schemes. The first set of experiments was used
to evaluate the performance of our basic algorithm, where the
client passively listened to the beacons. The second set was to
evaluate the advanced algorithm, where the client actively sent
probe requests to the AP.

B. Experimental Results

Basic Attack Evaluation: First, we tested whether legitimate
roadside APs could pass our basic algorithm. As an example,
the top of Fig. 6 shows the measured RSS values against the
logarithmic distance in an experiment. The client started the
algorithm when observing the first beacon from a roadside
AP and terminated the algorithm when γ was stable. In total,
the client collected 110 beacons within 11 s. The estimated γ
was 3.31 eventually, which falls into the valid range from 2 to
6. Therefore, the AP is correctly labeled as a legitimate AP.
Although the finish time seems a little long, it should be noticed
that this cost only occurs once when the client initially turns on
the Wi-Fi and tries to find an AP to connect. After that, the
client will wait for a certain period until the signal strength of
current APs becomes weak. Only at that time the client needs
to find another AP for handoff. During the waiting period, the
client should have collected enough RSS values from nearby
APs to determine which APs are rogue APs. To investigate the
robustness of our algorithm, we also conducted experiments
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Fig. 2. Experimental testbed at Kettering University.

B. Proposed Approach

We plan to build a networked system, which can per-
ceive the traffic event with the minimum human operation
and communicate with servers to get timely result. It takes
advantage of the wide availability of multiple sensors (e.g.
cameras, ultrasonics, radar, GPS, etc. [7, 8]), computation
(e.g., multi-core CPU architecture and powerful GPUs) and
communication resources (e.g., DSRC [9], WiFi, 4G/LTE [10],
and other licensed/unlicensed spectrum [11]) of smartphones
or modern vehicles. A comparison between the proposed
method and existing approaches is shown in Table I.

To leverage the limited computation power of smartphones,
we proposed to build a networked system. We assume a typical
Vehicle-to-Everything (V2X) communication environment in
the intelligent transportation system [12], where there are
two types of interfaces (i.e., proximity-based communication
interfaces (e.g., WiFi, DSRC) and the cellular communication
interface) [13, 14]. The mounted smartphone in the vehicle or
the vehicle, if there is no confusion, can communicate with
remote servers through nearby vehicles, roadside infrastruc-
tures, e.g., the Roadside Unit (RSU), through proximity-based
communication in an ad hoc manner if they are available. On
the other hand, the smartphone can communicate with servers
through the cellular network at any time. We plan to address
the cellular monetary cost, inference latency and inference
accuracy trade-off in the proposed system.

C. Experimental Platform

We have a 4G-LTE testbed facility and two Chevrolet Bolt
EVs at Kettering University. We have a master agreement to
access Sprint’s 4G LTE 38 and 41 bands (2, 510 MHz, 2, 520

MHz, and 2, 530 MHz frequencies). As shown in Fig. 2, there
are 5 base stations installed in 3 different locations across
Kettering University campus area. There are 3 Air4G antennas
on the roof of Academic Building with the coverage range
about 1.5-2 miles. Other 2 AirSynergy antennas are located
on the roof of Mott Engineering Building and Innovation
Center, respectively. The AirSynergy antenna’s coverage range
is about 1-1.5 miles. This 4G-LTE system fully covers Ket-
tering University GM Mobility Research Center, which is a
21 acre outdoor vehicle test track. In addition, the DSRC
(Cohda Wireless MK5) and WiFi Ad Hoc RSUs can be used
to conduct proximity-based communication experiments. This
test system is also connected with a backend GENI rack, where
we can run Deep Neural Networks (DNNs) to get inference
result at high accuracy.
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