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Abstract—Traffic monitoring is one of the key challenges in In-
telligent Transportation Systems (ITS). In this paper, we propose
to build a crowdsourcing application for traffic monitoring. The
novelty of the proposed approach is that visual data is collected
to enable automatic event inference with the recent advance in
Computer Vision. The challenge is that mobile devices are not
capable of handling visual task processing in high accuracy. We
propose to build a networked system so that mobile devices can
offload data via available wireless access interfaces (e.g., 4G LTE,
WiFi, DSRC) to edge servers, e.g., GENI Rack. We plan to use the
testbed at Kettering University to validate the proposed approach.

Index Terms—Spatial crowdsourcing, Intelligent Transporta-
tion Systems, Edge Computing

I. INTRODUCTION

Traffic monitoring is a key task in Intelligent Transporta-
tion Systems (ITS). Most existing monitoring systems are
infrastructure-based systems, deploying dedicated traffic sen-
sors, e.g., cameras, radars, etc., at fixed locations. However,
infrastructure-based systems are very expensive, and thus
sensors are only deployed in highways, major urban streets,
and large intersections. For example, a radar speed sign will
cost around $3000 [1]. As a result, these systems cannot collect
sufficient traffic information, particularly for large urban areas
consisting primarily of smaller streets.

Nowadays, crowdsourcing-based navigation applications,
e.g., Google Map [2] and Waze [3], are widely used by drivers.
Drivers usually mount smartphones on the windshield before
driving and get real-time updates during their trip. One of the
significant advantages is that navigation apps utilize millions
of users (i.e., crowds) to collect traffic information. Compared
with the infrastructure-based systems, navigation apps collect
traffic-related data from all running users and thus have roads’
traffic information on major streets and smaller streets. For
instance, Waze builds a live map where a Waze user can report
real-time traffic information, e.g., accidents, road hazards,
traffic jams, so that other Waze users can further calculate
the fastest route based on the real-time traffic updating [3].

In this abstract, we propose a traffic monitoring crowd-
sourcing system, i.e., AutoWaze, which utilizes the mounted
smartphone in the windshield to collect visual data. The
collected visual data can be analyzed automatically with Com-
puter Vision technique to support real-time traffic monitoring
and safety-related alerts in intelligent transportation systems.
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Fig. 1. Detection results of four object detection models
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As a result, it addresses several drawbacks of navigation
applications with the human operation (e.g., Waze). First,
reporting traffic-related events by drivers manually can be
distracting, and thus, it is not safe. According to [4], as a
user reporting an event currently needs some screen time, even
two seconds on the phone can cost a driver loss of attention
for ~30 meters (assuming 60 km/hour speed). Second, it will
be tough for a driver to report events in complicated road
condition. Third, there are only several categories and thus,
the information provided by the crowds is limited.

II. RESEARCH PLAN
A. Challenges

The major challenge of using visual data is due to weak
computation power of smartphones. The reason is that the
actual road situation might be extremely complicated. To fully
understand the current case, we need to hand-code millions of
variables in real-time. Notably, the weak computation power
of the smartphone cannot handle traffic detection in a real-time
manner and thus limits us from developing more sophisticated
applications. We ran some tests by using four state-of-the-
art object detection models on a Traffic CCTV camera in
Bangkok Thailand [5] and the results are shown in Fig. 1. The
SSD MobileNet simply detect nothing in a complex scenario.
However, according to [6], mobile devices can only handle
lightweight object detection models, e.g., SSD MobileNet and
SSD Inception rather than more sophisticated models, e.g.,
Faster R-CNN Inception and Faster R-CNN NAS.



TABLE I
A COMPARISON BETWEEN THE PROPOSED APPROACH WITH THE EXISTING APPROACH

Collected data Comm. Interface | Advantage Challenges Human interaction
Google Map GPS, cellular data Cellular small data size high estimation error | No
Waze GPS, cellular data, | Cellular small data size driver distraction, | Yes
human event report limited event category
AutoWaze Visual Data, GPS, ve- | Cellular, WiFi, | fine-grained descrip- | Big data size, weak | No
hicle sensor readings DSRC, etc. tion, automatic event | phone computation
recognition power
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Fig. 2. Experimental testbed at Kettering University.

B. Proposed Approach

We plan to build a networked system, which can per-
ceive the traffic event with the minimum human operation
and communicate with servers to get timely result. It takes
advantage of the wide availability of multiple sensors (e.g.
cameras, ultrasonics, radar, GPS, etc. [7, 8]), computation
(e.g., multi-core CPU architecture and powerful GPUs) and
communication resources (e.g., DSRC [9], WiFi, 4G/LTE [10],
and other licensed/unlicensed spectrum [11]) of smartphones
or modern vehicles. A comparison between the proposed
method and existing approaches is shown in Table 1.

To leverage the limited computation power of smartphones,
we proposed to build a networked system. We assume a typical
Vehicle-to-Everything (V2X) communication environment in
the intelligent transportation system [12], where there are
two types of interfaces (i.e., proximity-based communication
interfaces (e.g., WiFi, DSRC) and the cellular communication
interface) [13, 14]. The mounted smartphone in the vehicle or
the vehicle, if there is no confusion, can communicate with
remote servers through nearby vehicles, roadside infrastruc-
tures, e.g., the Roadside Unit (RSU), through proximity-based
communication in an ad hoc manner if they are available. On
the other hand, the smartphone can communicate with servers
through the cellular network at any time. We plan to address
the cellular monetary cost, inference latency and inference
accuracy trade-off in the proposed system.

C. Experimental Platform

We have a 4G-LTE testbed facility and two Chevrolet Bolt
EVs at Kettering University. We have a master agreement to
access Sprint’s 4G LTE 38 and 41 bands (2,510 MHz, 2, 520

MHz, and 2, 530 MHz frequencies). As shown in Fig. 2, there
are 5 base stations installed in 3 different locations across
Kettering University campus area. There are 3 Air4G antennas
on the roof of Academic Building with the coverage range
about 1.5-2 miles. Other 2 AirSynergy antennas are located
on the roof of Mott Engineering Building and Innovation
Center, respectively. The AirSynergy antenna’s coverage range
is about 1-1.5 miles. This 4G-LTE system fully covers Ket-
tering University GM Mobility Research Center, which is a
21 acre outdoor vehicle test track. In addition, the DSRC
(Cohda Wireless MKS5) and WiFi Ad Hoc RSUs can be used
to conduct proximity-based communication experiments. This
test system is also connected with a backend GENI rack, where
we can run Deep Neural Networks (DNNs) to get inference
result at high accuracy.
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