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Abstract—Unmanned aerial vehicles (UAV) or drone systems
equipped with cameras are extensively used in different surveil-
lance scenarios and often require real-time control and high-
quality video transmission. However, unstable network situations
and various transport protocols may result in impairments
during video streaming, which in turn negatively impacts user’s
quality of experience (QoE). In this paper, we propose a dynamic
computation offloading and control framework, named DyCOCo,
based on image impairment detection under various available
network bandwith conditions. Our DyCOCo framework demo
features IoT devices in a testbed setup on the GENI infras-
tructure. Our demo results show that our DyCOCo approach
can efficiently choose the suitable networking protocols and
orchestrate both the camera control on the drone, and the
computation offloading of the video analytics over limited edge
computing/networking resources.

Index Terms—computation offloading, drone video impairment
recovery, GENI testbed

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are being extensively
used in different scenarios in urban and rural area surveillance
scenarios. They typically are embedded with high-resolution
cameras and edge computation resources. As shown in Fig-
ure 1, a UAV system consists of air-to-ground wireless links
and ground-based wired networks. In most air-to-ground sce-
narios, UAVs are connected to ground control stations (GCS)
at the infrastructure gateway through a wireless network e.g.,
based on Wi-Fi, 4G/LTE or 5G technologies. In edge networks,
a variety of environmental conditions (e.g., codec) may affect
the performance of the video streaming between the UAV and
GCS. This in turn affects the performance of video streaming
in terms of frame blurring, stalling and distortion.

To ensure user quality of experience (QoE) [1] is satisfied
through intelligent coordination in the drone video analytics,
we present a novel dynamic decision making strategy which
can be used during the process of computation offloading
scenarios involving UAVs and GCS in edge computing setups.
The intelligent video processing considers the trade-offs in
selection of computation location using a novel function-
centric computing (FCC) architecture [2]. Using this approach,
we decouple the application pipeline into several standalone
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Fig. 1: Overview on UAV video analytics with Edge and Cloud resources

functions/microservices that can be executed independently
on different computing nodes/sites. We have conducted ex-
periments to evaluate how our scheme utilizes state-of-the-art
computation offloading techniques to Pareto-optimize trade-
off performance (i.e., frames-per-second) vs. QoE factors
(accuracy rate and tracking rate) during drone video analytics.

II. COMPUTATION OFFLOADING AND CONTROL

We propose a novel dynamic function-centric computation
offloading framework for drone video streaming analytics
viz., “DyCOCo” that can be used on multi-UAV/GCS/edge-
cloud scenarios as shown in Figure 1. This framework is
deployed on a GENI testbed, which features physical IoT
devices on the ground (acting as UAVs) to connect to edge
and cloud servers using Docker services and RESTful API
through a wireless network. The framework allows us to not
only facilitate trade-offs in performance vs. processing speed
of drone video analytics, but also aids in decision-making
among the edge, cloud or FCC computing paradigms for data
processing. Furthermore, we also consider network failure and
the resultant recovery time in UAV video transmission to avoid
packet loss and minimize waiting time. For near real-time pro-
cessing and high-quality video analysis, our framework makes
dynamic decisions on changing networking protocols (i.e.,
TCP/HTTP, UDP/RTP, QUIC) for video data transmission as
well as resolutions to avoid impairments such as blurring and
stalling during video streaming, as detailed in Figure 2.

Notably, based on our literature survey of [3] and related
experiments, unreliable wireless network quality and inappro-
priate networking protocol/codec choices often results in video
impairments, which could directly influence the object tracking
ability and recognition accuracy during video transmission.
Our proposed approach shown in Figure 3a addresses this issue
by dynamically changing the networking protocols, switching
between high resolution/low resolution for video capture, or978-1-7281-2700-2/19/$31.00 2019 © IEEE



Fig. 2: Illustration showing processes of our DyCOCo framework for UAV video analytics on 1) impairment detection and control module to modify video
stream, 2) physical network topology settings to use cloud resources and 3) requesting service chain to allocate resources and fulfil real-time control policy

changing camera direction for effective assessment of the
scene in real-time.

III. DEMONSTRATION SCENARIO

Our experiments consider several drone surveillance video
streams from a VisDrone dataset [4] with different VGA
resolutions (1080p: 1920 x 1080; 720p: 1280 x 720; 480p:
854 x 480; 360p: 640 x 360) in the DyCOCo pipeline (see
Figure 3a) to count and track moving objects (e.g., cars,
trucks and pedestrians). The analytics application used in our
experiments is publicly available at [2].

(a) Pipeline of the DyCOCo framework

(b) GENI testbed setting topology on DyCOCo

(c) Function chain setting GUI on DyCOCo

Fig. 3: DyCOCo prototype illustrations

Our geo-distributed drone/GCS/cloud testbed setup includes
2 micro-processors, 1 edge server (without HPC capability)
reserved in a GENI rack [5] at the Missouri InstaGENI
site and 1 cloud server reserved at Utah ProtoGENI site
as shown in Figure 3b. The two GENI sites are connected
by having an OpenFlow virtual switch on each site. Micro-
processors are NVIDIA Jetson Nano [6] with a configuration
of 128-core Maxwell GPU, Quad-core ARM A57 CPU and
4G RAM. Edge server has 12 cores Intel Xeon CPU and

16 GB RAM and has the same settings on a cloud server
at the Missouri InstaGENI site. Cloud server has 2 X 20
cores Intel Xeon Silver CPUs, 192 GB of EEC RAM and 12
GB NVidia Tesla P100 GPU. All the servers above support
Docker containers and can execute video analytics functions
independently, without running an entire application pipeline.

In the first part of the demo, we show how UAVs with
on-board computation resources can be controlled to execute
a part of the video analytics functions as well as buffering
the video data (i.e., during network partitions) instead of
offloading all the computation to a GCS or the cloud. We
demonstrate that our DyCOCo framework can handle network
failure events without compromising the object recognition
accuracy as well as tracking performance. In the second
part of the demo, we demonstrate how different transport
protocols and various bandwidth generate impairments in the
video stream. We also show how our DyCOCo framework
detects impairments and rectifies them through: (a) camera
control directed by navigation control to get the necessary
high-resolution video streams in the video farming, or (b)
change the networking protocol/codec without compromis-
ing the tracking performance. Next, we instantiate a geo-
distributed UAV/GCS/cloud topology on a GENI testbed and
allocate diverse resources to each node (see Figure 3b). As
the final step, we setup latency and bandwidth requirements to
each function/task in the video analytics application, and show
how our DyCOCo framework identifies the most appropriate
network topology and allocates required resources with our
MRSCO tool [2], as shown in Figure 3c.
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