
Demo Abstract: LASK: A Distributed Service Discovery
Platform on Edge Computing Environments

Yuuichi Teranishi, Takashi Kimata, Hiroaki Yamanaka, Eiji Kawai, Hiroaki Harai
National Institute of Information and Communications Technology, Tokyo, Japan

Email: {teranisi,kimata,hyamanaka,eiji-ka,harai}@nict.go.jp

Abstract—We present the LASK protocol and its platform
implementation that supports distributed k-Nearest Service Dis-
covery. LASK achieves scalable and locality-aware name-based
service discovery and routing for the target nodes avoiding
redundant lookup message exchanges across the edge networks.

I. INTRODUCTION

The edge computing architecture has been considered as a
next-generation network computing paradigm.The edge com-
puting architecture enables applications to have a shorter
response time, reduces the computation load on devices, and
localizes the data processing. Such properties are suitable for
the advanced Internet of Things (IoT) applications. In a recent
forecast, the number of Multi-access Edge Computing (MEC)
resources in 5G is expected to be over a million in the near
future [1].

In such environments, the service discovery plays an im-
portant role for efficient executions of applications by finding
appropriate service or resource to use under the situation
of growth in the size and the diversity of the services and
resources [2]. As a simple but flexible service discovery, we
focus on the name-based service discovery. The name-based
service discovery discovers an edge node (i.e., a server, a
process) that has a specified name that describes a certain
status or a running service. The service discovery needs to
be scalable as the number of services is assumed to be a
large number. There is a specific requirement for the edge
computing environments that an application needs to discover
a service or a resource on the computer physically located
closely, in order to achieve the small latency. In addition, there
might be a large number of edge nodes that register the same
name because the tasks are offloaded. The offloaded task of a
real-time IoT application often requires parallel executions to
be finished within a short period. For such tasks, multiple edge
computers must be discovered for the parallel executions. For
such cases, a certain number of nodes (k nodes) that holds
the specified name must be discovered to satisfy the required
performance.

We demonstrate a service discovery protocol called LASK
(Locality-Aware Service discovery protocol for K-nearest
search) [3], which provides functions for the above pur-
pose. LASK supports distributed k-Nearest Service Discovery
(kNSD), which finds k nearest services that hold the matched
name in order of the closeness.

II. k-NEAREST SERVICE DISCOVERY

An example of the edge computing network model is shown
in Fig. 1. The edge computing environment on the Internet has

rnodes

Layer 2

I0,0

I1,0 I1,1

I2,0 I2,1 I2,2

r rsa sa sa

sa sa rsc

sbsbsc

discovery (or delivery)
q = sa , k = 3

I1,2

I2,0 I2,1 …

Layer 1

Layer 0

Fig. 1. An example of the edge computing network model and kNSD

natural hierarchical properties such as the access networks,
the Internet service providers’ networks, and the wide-area
networks between countries and continents. The target nodes
of the service discovery can belong to any leaf subnetwork in
the hierarchy.

Each subnetwork in each layer has a network identifier. The
identifier is denoted as Il,u, where l is the layer in the hierarchy
and u is the unique value in the layer l, e.g., a sequence
number in each layer. The network identifier of a node can
be denoted as an ordered list of the identifiers. For instance,
the leftmost subnetwork in the layer 2 in Fig. 1 is denoted as
{I0,0, I1,0, I2,0}. We define the order of network identifier as
the lexicographical order. We also define a notion of network
distance. The network distance D(x, y) between two network
identifiers x and y can be calculated as follows:

D(x, y) = max(|x.nid|, |y.nid|)− |p(x.nid, y.nid)|

where x.nid denotes the network identifier of x and p is a
function to pick up the common prefix in the two network
identifiers. For example, D({I0,0, I1,1}, {I0,0, I1,1}) is 0 and
D({I0,0, I1,2, I2,0}, {I0,0, I1,1}) is 2.

By using the above definition, The kNSD can be defined
formally as follows.

Given a set of all nodes in the entire network N ,
a query for the name q, and a query requester p,
kNSD finds a set of nodes S such that |S| = k and
for any s ∈ S and s′ ∈ V − S, D(p.nid, s.nid) ≤
D(p.nid, s′.nid)), where V = {v|sv(v) = q, v ∈
N} and sv(v) is the the name of the service that
the v provides.

Fig.1 shows a case where a requester node r requests 3(= k)
services named sa.978-1-7281-2700-2/19/$31.00 2019 c© IEEE

5

NL axis

LN axis

discovery request

...

response

k-nearest nodes

(1) discovery in order
of closeness

(2) discovery in order
of service names

r
(1)

(2)

Fig. 2. Discovery sequence of LASK

TABLE I
THE KNSD REST API (PARTIAL LIST)

method path description
PUT /netid/{name} register nid
PUT /name/{name} register name
DELETE /name/{name} unregister name
PUT /name/{name1}/{name2} change name1 to name2
GET /endpoints/{name}?k={k} find k services for name

III. LASK OVERVIEW

We have proposed a distributed kNSD protocol called
LASK. LASK assumes Key-order Preserving Structured Over-
lay Network (KOPSON) as a base algorithm of the distributed
discovery. In our LASK platform implementation, we used a
bi-directional KOPSON algorithm called Suzaku [4], which
we have proposed.

The principle idea of LASK is to use two KOPSONs for
two-dimensional routing to the nearest service and the rest of
the k services. By using KOPSON, the communication loads
are balanced among nodes, and the node failures are recovered
in a self-organized manner.

The one dimension is used for the location-name (LN) axis
and the other dimention for the name-location (NL) axis. For
the LN and NL axis, each node has keys represented as {nid,
name,unique id} and {name, nid,unique id}, respectively.
The unique id is the randomly assigned identifier for each
node. The LN axis is used for lookup the nearest node that
matches to the query. The NL axis is used for lookup the
rest-of k nodes that match to the query in order of the
closeness. LASK can perform scalable discovery because it
uses the routing algorithm of KOPSON. The number of lookup
hops logarithmically increase against the number of nodes. In
addition, the locality of the routing is preserved by the network
distance because the nodes in both dimensions are sorted by
nid. Fig. 2 shows the interaction between a requester node
r and both axises for a k service discovery. Please refer our
original paper [3] for more in detail.

IV. LASK PLATFORM IMPLEMENTATION

We implemented a LASK platform using Suzaku as a
KOPSON. Suzaku is implemented on an open source overlay
network platform PIAX [5]. Fig. 3 shows the module structure
of our LASK platform implementation.

As an application interface for the service discovery, we pro-
vide a REST API for easy access and simple implementations.
Each edge node runs a process of HTTP(S) server and accepts
operation requests for kNSD from the application processes.
Some REST APIs provided in our implementation are listed in
Table I. These REST APIs are intuitively designed. The GET

3

Network Layer (TCP/UDP)

edge node (edge server)

LASK protocol handling

LN-axis NL-axis
KOPSON (Suzaku)

kNSD
REST

I/F

Application
Process

Network Layer

LASK protocol handling

other edge node

LN-axis NL-axis
KOPSON (Suzaku)

a

b

c

d

c : PIAX API
d : Suzaku protocol (on TCP/UDP)

a : kNSD REST API (on HTTP(S))
b : LASK API

Fig. 3. The module structure of our LASK platform implementation

4

rs

Kanagawa
10.91.0.0/24

s

Kyoto
10.50.0.0/24

Ishikawa
10.19.0.0/24

JOSE testbed

...

50 nodes

s s ...s s ...

50 nodes50 nodes

Fig. 4. The demonstration environment on JOSE testbed

method for the path beginning from “/endpoints” discovers the
IP address of the edge node that matches to the request.

The accepted request is forwarded to the LASK protocol
handling module. The LASK protocol handling module regis-
ters/unregisters the name and discovers the endpoints for the
specified name via PIAX API. The LASK-implemented edge
nodes exchange messages to maintain the overlay network
structure based on the Suzaku protocol. As the underlay
network protocol, TCP or UDP can be used. The protocols
for the underlay network are implemented as plug-ins.

In the demonstration, we present the system implementation
of LASK platform running on 150 servers (edge nodes) in
JOSE [6] testbed (Fig. 4). There are three edge networks (data
centers) on the testbed, and each network contains several
services that matches to the requested name s. By issuing
kNSD REST request from a node r to the LASK platform,
a discovery request is issued, forwarded, and matched by
the nearest services in order of the closeness. The response
is returned promptly by the scalable lookup feature of the
distributed KOPSON protocol.

REFERENCES

[1] iGillottResearch Inc., “The Business Case for MEC in Retail: A TCO
Analysis and its Implications in the 5G Era,” 2017.

[2] E. Meshkova, J. Riihijärvi, M. Petrova, and P. Mähönen, “A survey
on resource discovery mechanisms, peer-to-peer and service discovery
frameworks,” Computer networks, vol. 52, no. 11, pp. 2097–2128, 2008.

[3] Y. Teranishi, T. Kimata, H. Yamanaka, E. Kawai, and H. Harai, “Sup-
porting k-nearest service discoveries for large-scale edge computing
environments,” in Proc. of GLOBECOM 2018, 2018, pp. 1–7.

[4] K. Abe and Y. Teranishi, “Suzaku: a churn resilient and lookup-efficient
key-order preserving structured overlay network,” IEICE Transactions on
Communications, 2019.

[5] Y. Teranishi, “PIAX: Toward a Framework for Sensor Overlay Network,”
in Proc. of CCNC’09 (Workshops), 2009, pp. 1–5.

[6] Y. Teranishi, Y. Saito, S. Murono, and N. Nishinaga, “JOSE: An Open
Testbed for Field Trials of Large-scale IoT Services,” Journal of the
National Institute of Information and Communications Technology Vol,
vol. 62, no. 2, pp. 151–159, 2015.

