A Heterogeneous Parallel Packet Processing
Architecture for NFV Acceleration

Jinshu Su*, Biao Han*, Gaofeng Lv*, Tao Li*, Zhigang Sun*
*College of Computer, National University of Defense Technology, ChangSha, 410073, China
National Key Laboratory of Parallel and Distributed Processing, ChangSha, 410073, China
{sjs, nudtbill, lvever, taoli, sunzhigang} @nudt.edu.cn

Abstract—Network function virtualization (NFV) offers a new
way to design, deploy and manage networking services. It is of vital
importance to exploit heterogeneous parallelism between hardware
and software, in order to improve virtulization performance
and quality of virtualized network services. In this poster, we
propose a novel heterogeneous parallel architecture that highly
exploits the parallelism inside packet processing, and implemen-
tation efficacy with hardware processing engines and software
threads. We present two packet processing pipelines with three
implemented VNF instances to better demonstrate the efficiency
of heterogeneous parallelism in accelerating NFV. We show the
performance of our proposed architecture with various virtualized
requirements and traffics in a well-deployed network environment.
Experimental results reveal that it can achieve accelerated NFV
performance, as well as provide a wide class of VNFs to improve
the quality of virtualized network services.

Index Terms—network function virtualization, heterogeneous
parallelism, VNF

I. INTRODUCTION

Network function virtualization (NFV) is a network architec-
ture concept that utilizes the virtualization technology to virtual-
ize entire classes of network node functions into building blocks
that may connect, or chain together, to create communication
services. A virtualized network function, or VNF, may consist
of one or more virtual machines running different software and
processes, on top of standard high-volume switching and routing
devices, or even cloud computing infrastructure, instead of
requiring custom hardware appliances for each network function
[1].

While NFV has been studied in the wider space of computer
networks, exploiting parallelism to support fully virtualized
network services is attracting extensive attentions of late. Until
very recently, most of the proposals achieve network function
parallelism by running multiple independent stacks in parallel
or using co-processors in software [2] [3]. Nevertheless, current
software parallelization approaches may introduce inestimable
processing delay, especially when the virtualized network func-
tions are employed by massive subscribers. In addition, hard-
ware solutions for NFV acceleration are very challenging to
achieve packet processing flexibility. Therefore, it is of vital
importance to exploit heterogeneous parallelism in packet pro-
cessing to improve the virtulization performance and quality of
virtualized network services.

In order to achieve the above-mentioned objectives, in this
poster, we propose a novel heterogeneous parallel packet pro-
cessing architecture that highly exploits the parallelism in-

Corresponding author is Biao Han(nudtbill @nudt.edu.cn).

978-1-7281-2700-2/19/$31.00 2019 © IEEE

Multi-core CPU

OpenFlow i v |

|
|
I Packet Processing |
Fﬁ orx v B e
I
i I
|

Pipelines
DPI T

Jayojedsiq

—
r
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Ingress
Control

Egress
Control

19s1Bd
[

ke |
I v

OFX: Openflow Extension VNF: Virtual Network Function
TM: Traffic Manager HW: Hardware
DPI: Deep Packet Inspection SW: Software

Fig. 1. The implemented NFV acceleration platform architecture

side packet processing, which is effectively implemented with
hardware processing engines and software threads connected
via fast I/O channels. We design and implement two packet
processing pipelines with three implemented VNF instances to
better evaluate the efficiency of heterogeneous parallelism in
accelerating NFV. Specifically, we exploit the packet process-
ing parallelization potentiality of Openflow and implement an
extended Openflow VNF, with fine-grained packet processing
flexibility. A traffic manager (TM) VNF is implemented to im-
prove the quality of virtualized services for NFV acceleration in
terms of queue dispatching, scheduling and reserved bandwidth
allocation.

II. SYSTEM ARCHITECTURE

Fig.1 depicts the overview of our implemented NFV accelera-
tion platform architecture. The core components in the platform
are a FPGA-based network hardware combined with auxiliary
multi-core processors.

First, in order to fully utilize the high-speed parallel pro-
cessing capability of FPGA to accelerate NFV, multiple parallel
packet processing pipelines are implemented in our platform.
Heterogeneous parallelism can be exploited by splitting VNFs
into stateful protocol processing threads in software (VNF-SW)
and fast packet forwarding engines in hardware (VNF-HW). A
VNF instance consists of VNF-SW threads run in individual
CPU core and VNF-HW modules executed in a light FPGA
shell, in which states are retrieved and configured via fast

I/O channels. According to certain virtualization requirements,
packet processing functionalities along a specific pipeline can
be dynamically orchestrated into multiple VNFs in software. In
this poster, we will present two packet processing pipelines with
three implemented VNFs to better demonstrate the efficiency of
heterogeneous parallelism in accelerating NFV.

Second, in order to improve the quality of virtualized services
for NFV acceleration in terms of queue dispatching, scheduling
and reserved bandwidth allocation, each flow queue is attached
with an individual per-port processing priority in TM VNF-HW,
which enables dynamic allocation of queue resources by TM
VNF-SW. Flow queues are organized as single-stage multiple
ones. The key functionality is a preemptive priority based Deficit
Round Robin (DRR) scheduling mechanism, namely PP-DRR,
which is performed in a parallel and unified manner. A TM VNF
instance consists of a TM VNF-SW thread in an individual CPU
core and a TM VNF-HW module within a packet processing
pipeline. It is feasible to deploy multiple instances in parallel
to further exploit the unutilized bandwidth for differentiated
qualities of services and improve the link utilization.

Third, as current version of Openflow specification does not
support heterogeneous parallelism and NFV acceleration, it is
beyond its capability to provide fine-grained and accelerated
packet processing for NFV. In this poster, we exploit the parallel
packet processing potentiality of Openflow and implement an
extended Openflow VNF, named OFX VNF, which consists of
an OFX VNF-HW module and multiple OFX VNF-SW threads
in multi-core. Besides of ordinary capabilities, OFX VNF-SW
threads can be associated to individual flows. Functionalities
such as packet abstract extraction, truncation and compression
can be parallelly performed in software threads, upon the Open-
flow based packet forwarding engines implemented in hardware.
Besides, we also provide a DPI VNF in our platform, in which
matching engine functionalities can be parallelly executed in
both DPI VNF-HW and DPI VNF-SW [4].

III. EVALUATIONS

The evaluation environment is set up as shown in Fig.2.
In this poster, we will show the performance of our NFV
acceleration platform with OFX VNF and TM VNF instances.
The main equipment is our implemented NFV acceleration
platform, which can support high capacity packet processing,
routing, switching, and deep packet inspection, with up to
4*10G LAN/WAN/POS in standard SFP+ interfaces or 32*1GE
in standard SFP interfaces. At the core of the platform are two
Altera Stratix V GX FPGAs, adjacent to a main control card
with two multi-core processors in it. There are 16 cores within
each processor. The main evaluation tool is a SPIRENT Adtech
AX/4000 Broadband Test System, which provides 1GE ports to
analyze traffics go through the NFV acceleration platform via a
standard SFP interface. Connected with the test system with two
1GE ports, our NFV acceleration platform receives packets via
these two ports and send back to the test system via one port at
rate of 1Gbps, in which network congestion will occur and our
platform plans to schedule the traffic. Both of our platform and
testing system are connected to a control terminal in LAN, by
which configurations are managed via Command Line Interface
(CLI) and testing software.

P ——
Adtech AX/400

Test System

g A
GE Ports NFV Acceleration Cont}'ol
Terminal

Platform

-

Fig. 2. The evaluation environment

30000 25000
mm— PP-DRR based QuS VNF
DRR based schedul @
& 25000 scheduling 8 20
a
g 20000 E‘
= g 15000
% 15000 S
'_g o 10000
% 10000 é
a0 T s | |—— PP-DRRbased QoS VNF
w | DRR based scheduling
I]
o

0
0 5 10 15 20 25 30 35 40 45 50 55 60 65

Sequence of priority queue

(a) Bandwidth

0 5 10 15 20 25 30 35 40 45 50 55 60
Sequence of priority queue

(b) End-to-end delay

Fig. 3. Performance over 64 priority queues

We use the test system to generate 64 flows at each 1GE port
towards our NFV acceleration platform. It is noted that each
flow is processed in a flow queue with an individual transmission
priority in the generated traffic. After receiving the packets, our
platform will schedule them via the proposed PP-DRR based
TM VNF, and send them at an output rate of 1Gbps back to
the test system. We can observe the transmission bandwidth
and end-to-end delay on the control terminal. Fig.3 shows
the bandwidth and corresponding end-to-end delay of PP-DRR
based TM VNF and DRR based scheduling mechanism over
64 individual priority queues with descending quotas. It can be
observed that our platform reduces the end-to-end delay while
achieving almost the same bandwidth over all priority queues.
The reason is that we always schedule the traffic flow with a
higher priority through parallel packet processing between and
within TM VNF-HW and TM VNF-SW. In order to evaluate the
heterogeneous parallelism efficiency of the OFX VNF instances,
we conduct experiments of demonstrating the procedure of
deploying fine-grained flow rules to Openflow pipeline, and
dynamic binding between flows and specific cores. Evaluation
results can be observed by presenting the utilization rate on each
core.

REFERENCES

[1] Network Functions Virtualisation, http://portal.etsi.org/portal/server.pt/com
munity/NFV/367, ISG web portal, accessed in 2019.

[2] Zhang, Yang, Bilal Anwer, Vijay Gopalakrishnan, Bo Han, Joshua Reich,
Aman Shaikh, and Zhi-Li Zhang, “Parabox: Exploiting parallelism for
virtual network functions in service chaining,” in Proceedings of the
Symposium on SDN Research (SOSR), pp. 143-149. ACM, 2017.

[3] Sun, Chen, Jun Bi, Zhilong Zheng, Heng Yu, and Hongxin Hu, “Nfp: En-
abling network function parallelism in nfv,” in Proceedings of SIGCOMM,
pp. 43-56. ACM, 2017.

[4] Su, Jinshu, Shuhui Chen, Biao Han, Chengcheng Xu, and Xin Wang, “A
60GBps DPI prototype based on memory-centric FPGA,” in Proceedings
of the 2016 ACM SIGCOMM Conference, pp. 627-628. ACM, 2016.

