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Abstract—Accurately measuring the distance traveled by an
object or odometry, in indoor environments is important in
many applications such as video-game controller tracking or
robot route guidance. While the distance traveled by an object
can be simply measured using an accelerometer, it is well-
known that distances measured with accelerometers suffer from
large drift errors. In this paper, we demonstrate WIO, a WiFi-
assisted Inertial Odometry technique that uses WiFi signals as
an auxiliary source of information to correct such drift errors.
The key intuition behind WIO is that, among multiple paths of a
transmitted WiFi signal that arrive at a moving object equipped
with a WiFi receiver, WIO can isolate the path that is most
parallel to the object’s direction of motion and use the change in
the length of that path as an estimate of the traversed distance.
WIO then fuses this distance estimate with the distance measured
from an accelerometer on-board the object to correct drift errors.
We implement WIO using commodity devices, and evaluate it on
a robot car. Our results demonstrate an average error of just
4.37% in estimating the distance traversed by the car.

I. INTRODUCTION

Odometry is the process of measuring the distance traversed
by an object over a given period of time. Accurate odometry
is important in several indoor applications such as robotics
to perform simultaneous localization and mapping. While
accurate odometry has been achieved for outdoor scenarios
using GPS, accurate odometry for indoor scenarios is still an
unsolved problem. The most common odometry approach for
indoor scenarios is inertial odometry. In inertial odometry, an
inertial measurement unit (IMU), often comprised of an ac-
celerometer and a gyroscope, is first attached to an object and
then the distance moved by the object over the desired period
of time is measured by double integration of the acceleration
values reported by the IMU’s accelerometer. Because such
IMUs are very power efficient and are available on almost
all latest hand-held and wearable devices, inertial odometry is
the most ubiquitous odometry technique for indoor scenarios.
However, the distance measured only with inertial odometry
faces the well-known problem of large drift errors over time,
where the growing accumulation of errors after successive
double integrations results in large drifts in the estimated
distance. Thus, despite the appeal of being ubiquitous, pure
inertial odometry is widely considered to be error-prone in
most real-world applications.
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A common solution to overcome such drift errors in pure
inertial odometry is to augment it with an auxiliary source of
information, e.g. a camera, and use that information to correct
the drift. Among the existing auxiliary sources of information,
WiFi signals are of recent interest, as WiFi communication,
just like IMUs, has become very power efficient and ubiquitous
on most hand-held and wearable devices. However, the current
WiFi-assisted inertial odometry approaches e.g. [1], [2] have
a number of limitations, as they may : 1) not work indoors, 2)
require regular fingerprinting, 3) violate WiFi communication
standards by hopping across multiple WiFi channels or 4)
require multiple WiFi access points(APs). Therefore, in this
paper, we demonstrate WIO, a WiFi-assisted Inertial Odometry
scheme that uses WiFi signals from a single AP as the
auxiliary source of information to correct the drift errors
in pure inertial odometry, without having any of the above
limitations.

II. DESIGN

Fig. 1 shows the design principle of WIO. A movable
object of interest, such as a robot, for which odometry is
desired, is equipped with a WiFi NIC and an IMU. A WiFi
AP is also deployed in the indoor environment surrounding
the object, but not necessarily in the same room. The object
periodically pings the AP as it moves and collects channel state
information (CSI) from its WiFi NIC, while simultaneously
recording acceleration measurements from its IMU. Since
the indoor environment typically has multiple WiFi signal
reflectors such as walls, the measured CSI is actually the
sum of all amplitude and phase changes of the transmitted
WiFi signal propagating along the direct path as well as the
reflection paths, collectively known as multipaths. Therefore,
WIO takes a continuous stream of multipath CSI and Accel-
eration measurements during the object’s motion, and aims to978-1-7281-2700-2/19/$31.00 2019 c© IEEE



periodically compute D̂, an estimate of the total distance D
traversed by the object. To compute D̂, WIO performs two
steps for every finite measurement period (e.g. 1 sec). First,
WIO obtains two estimates of the distance traversed by the
object during that measurement period: an estimate da from
the acceleration measurements and an estimate dc from the
CSI measurements. Second, it employs a Kalman filter(KF) to
update D̂ by adding da to the previous value of D̂ and then
correct any drift in the updated D̂ using dc. Thus, D̂ which is
initialized to zero, represents the KF estimate of the distance
traversed by the object until a given measurement period.

To estimate da, WIO performs standard double integration.
However, to estimate dc, WIO aims to first estimate the
motion-induced change in the path lengths of all multipaths
and then select the path whose path length change best ap-
proximates the traversed distance. Fig. 2 provides an example,
where the movement of an object of interest results in a change
in the path length of both the direct path (maroon colored
lines) and a reflection path (blue dashed lines with path length
changing from L1 to L2). WIO can obtain such changes in
the length of all multipaths during the object’s motion by
applying the CSI based Path-Length Change model proposed
in [3]. However, since this model provides only an estimate
of the changes in multipath length, WIO further applies two
key insights to select the signal propagation path whose path
length change best approximates the traversed distance: 1) The
signal propagation path that is exactly parallel to the direction
of the object’s motion undergoes a change in path length
that is exactly equal to the distance traveled by the object
in that measurement period, and 2) The signal propagation
path that is exactly parallel to the direction of the object’s
motion undergoes the highest Doppler Frequency Shift(DFS)
and therefore, the greatest change in path length among all
multipaths. Thus, if WIO selects the path with the greatest
change in path length during a given measurement period, it
has essentially selected the path that is most parallel to the
direction of the object’s motion. This idea is also illustrated in
Figure 2, where compared to the direct path, the reflection path
visibly undergoes the greatest change in path length which is
almost equal to the distance moved by the object, as it is more
parallel to the direction of the object’s motion. Consequently,
the estimated path length change of the most parallel path can
be used as dc during the measurement period. Therefore, WIO
performs the following three steps to measure dc. First, WIO
applies Fourier Transform on the CSI power measurements
after a denoising step to extract unique frequencies in the
CSI. Second, WIO selects the highest frequency component
Fk in the FFT output (i.e. highest DFS) with a magnitude
greater than an empirical threshold. Finally, WIO generates a
distance estimate dc ≈ Fkλ where λ is the wavelength of the
WiFi signal (e.g. 5cm) and then passes it to the KF.

III. IMPLEMENTATION

We implement WIO on a portable platform as shown in
Fig. 3. To collect CSI measurements, we attach an Intel 5300
WiFi NIC and three antennas to a HummingBoard Pro inside

a 15× 10× 5 cm cardboard box, as shown below along with
a Lithium-ion battery. Next, to collect acceleration measure-
ments, we attach an Invensense MPU-6050 IMU mounted on a
GY-521 breakout board, to an Arduino Uno. We then screw the
Arduino Uno to the front of the cardboard box and connect it to
the HummingBoard via USB. Finally, we mount the portable
platform on a line-following robot car. The car is controlled
by another Arduino Uno, which takes a digital input from the
HummingBoard for starting or stopping the car along a line
measuring 5m across a room.
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Fig. 3: Prototype and Deployment on a robot car

To demonstrate WIO, we execute a program on the Hum-
mingBoard which operates in three steps. First, the program
directs the Arduino Uno mounted on the cardboard box to
forward the acceleration values from the IMU at 500Hz and
at the same time directs a background program to forward the
CSI measurements from the Intel CSI Tool. The background
program triggers the CSI measurements by pinging a nearby
AP (Netgear Nighthawk R6700) at 500hz in the 5GHz band
with a wavelength λ = 5.2cm. Second, the program directs the
Arduino Uno of the car to start and then continuously produces
a KF-distance estimate at the end of each measurement period
set to 1 second using the incoming acceleration and CSI
measurements. Third, the program directs the Arduino Uno
of the car to stop after a preset duration. The last KF-distance
estimate then gives the total distance traveled by the car. We
run the car on the line ten times, with five runs in either
direction and find that WIO estimates distance traversed by
the car with a mean error of just 4.37%. Finally, we refer the
reader to [4] for a more elaborate technical description of WIO
and its performance on human and drone objects.
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