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Abstract—With the widespread usage of containerized vir-
tualization in data centers and clouds, it is important to en-
abling high-throughput and zero-copy data transfer between
those containers. Remote Direct Memory Access (RDMA) allows
bypassing the kernel for packet processing by offloading it to
specific RDMA-enabled NICs. The existing solutions enabling
RDMA with containers are either based on custom container
orchestrators (e.g., FreeFlow) or lack the ability for the control
plane to manage the underlying RDMA traffic (e.g., Kubernetes
RDMA plug-in via SR-IOV). The work in this paper builds off
of previous work in Kubernetes to make an architecture that
allows control over bandwidth requirements of RDMA within a
Kubernetes cluster.

I. INTRODUCTION

For data center networking, RDMA has recently gained
tremendous attention for its capability to provide extremely
high throughput, low latency, and low CPU utilization. RDMA
achieves all these by zero-copy networking in which net-
work adapters directly transfer data with no CPU involve-
ment bypassing the OS kernel. Containers (or containerized
applications) are another technology widely used for data
center networking for its isolation, lightweight nature, and
portability. Containers are also popular as they provide reliable
and persistent service at low cost. In a data center, it is often
the case that hundreds of containers are deployed concurrently,
and this necessitates the use of container orchestrators, e.g.,
Kubernetes [1], to automate the management of containers,
their load balancing, and fast replication in case of system or
network failures.

The isolation provided with containers, however, impedes
their access to a host’s RDMA interfaces. Additional support
is needed to configure and connect these RDMA interfaces
to running containers, as well as to ensure that containers
are deployed to hosts within a cluster that can provide the
necessary RDMA resources. FreeFlow [2] attempted to solve
this problem as a container orchestrator for use of RDMA with
an overlay router. FreeFlow, however, requires containers to be
modified with its own library, and does not provide an interface
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comparable to that of Kubernetes, rapidly-developing open-
source software with a large community of contributors for
container orchestration. A Kubernetes plugin named k8s-rdma-
sriov, designed by Mellanox [3], creates an overlay network
among pods of Kubernetes, and virtualizes RDMA NICs
for containers in pods using SR-IOV hardware-implemented
technology for virtualizing PCI express device. Unfortunately,
the current solution for RDMA still lacks in several properties:

• Bandwidth limiting: The ability to customize virtualized
interfaces, i.e., Virtual Function (VF), to meet the need
of each container.

• Heterogeneous nodes: Handling nodes with diverse num-
bers and capabilities of VFs.

• Multiple interfaces: Handling a request for a pod that
requires multiple VFs.

• Per-container versus per-pod VF allocation: Containers
can request a VF, while interfaces are shared across a
pod in Kubernetes.

This is our first attempt to extend Kubernetes with the
above capabilities. We design a new RDMA architecture
for Kubernetes with the following components: (a) RDMA
Daemon Set that runs on each node for initializing RDMA
resources, (b) Kubernetes Scheduler Extender that finds the
most appropriate node for deploying a pod with RDMA
requirements, (c) a modified Container Network Interface
(CNI) plugin that virtualizes an RDMA NIC for multiple
containers. Our contributions are as follows:

• We provide RDMA bandwidth limiting and bandwidth
reservation on a per-interface basis as part of a Kuber-
netes pod definition. With this, containers can have the
amount of RDMA bandwidth they use limited, or have
bandwidth set aside for their exclusive usage.

• We significantly improve support for heterogeneous clus-
ters containing nodes with varying quantities of physical
RDMA interfaces. Additionally, our scheduler considers
bandwidth in use when finding a target node for a pod.

• We provide support for the allocation of multiple RDMA
interfaces per pod as well as pods that require no RDMA
interfaces.978-1-7281-2700-2/19/$31.00 2019 © IEEE



Fig. 1. System Architecture

II. SYSTEM ARCHITECTURE

The system architecture is shown in Figure 1. Two important
goals in the system design and implementation are 1) not
to modify any Kubernetes core code, and 2) to keep in line
with the Kubernetes built-in plugins and extension concept. As
shown in the figure, the solution contains three components,
specifically the RDMA Hardware Daemon Set, the Scheduler
Extender, and the Container Networking Interface. Note that
the existing RDMA Device Plugin [4] provided by Mellanox is
removed in its entirety. The components we created are highly
extensible allowing for new features to be added easily in the
future.

A. RDMA Hardware Daemon Set

The RDMA Hardware Daemon Set (or a daemon set in
short) provides two critical functions: VF creation and mainte-
nance. The daemon set is a pod that runs across all nodes in the
cluster and has two containers that are associated with it. The
first container is an init container, which is run before any other
containers in the pod. Its purpose is to initialize all the VF’s
that exist on any node. The second container that runs after the
init container is a server. It provides a RESTful endpoint that
displays metadata on the VF’s and RDMA SR-IOV enabled
interfaces, also known as physical functions (PFs), on a node.
When the container starts up, the server container scans the
node to find all the PFs. It then sets up a RESTful endpoint
and upon an HTTP GET request, it will return the metadata
about each PF and their associated VFs in JSON format.

B. Scheduler Extender

The Scheduler Extender is a process that runs on the master
node of a Kubernetes cluster. It decides whether each node
has the necessary requirements for a pod deployment based
on the number of VFs required and the minimum bandwidth
requirements of each of those VFs. For example, in the case
where a pod has a requirement of two VFs with a bandwidth
of 100Gb/s each, it will only be placed on a node that has

either a single interface that has at least 200Gb/s of unused
bandwidth or has two interfaces that each has at least 100Gb/s
of unused bandwidth.

C. Container Networking Interface (CNI) plugin

CNI is responsible for moving VFs from the node’s names-
pace to the pod’s namespace when the pod is starting up.
When the pod is shutting down, CNI moves VFs back to
the node’s namespace. The CNI’s original capabilities had
come from Mellanox CNI [4], as it is only capable of adding
a single VF to a pod’s network namespace regardless of
the pod’s requirements. In our design, CNI is able to read
the pod’s configuration and determine how many VFs has
been requested. The CNI then performs the same operation
as the scheduler extender where it decides which interfaces
to be used. The CNI then moves all the requested VFs
to the pod’s network namespace from the node’s network
namespace. Finally, the CNI sets an IP address for each VF,
and configures the bandwidth requirements described in the
pod’s configuration.

III. TESTING AND VERIFICATION

In order to verify the functionality of our solution, we
deployed containers with different bandwidth reservations and
limitations, then ran connectivity and throughput tests between
them. Our testing environment consisted of a master node with
the Kubernetes orchestrator and two slave nodes, each with
a pair of 100Gb/s RDMA NICs. To ensure the bandwidth
management was working correctly, we ran a test that involved
multiple pods on both slave nodes in the Kubernetes cluster.
Finally, we tested pods that requested various numbers of
RDMA interfaces, up to a couple of pods that required 60
interfaces each. This served as a stress test of the CNI plugin,
which worked correctly when assigning interface names and
IP addresses.

IV. CONCLUSION

In this work, we bridge the gap between Kubernetes con-
tainer orchestrator and control over its underlying RDMA
traffic. Unlike previous approaches, our solution moves away
from a per-container basis for requesting RDMA resource to
a per-pod basis. As a result, operators of a containerized data
center can manage the RDMA traffic used by the applications
in a pod by simply editing that pod’s configuration file before
its deployment.
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