
On Verification of Remote Computing
on Potentially Untrusted Nodes
Hiroki Masuda, Kentaro Kita, Yuki Koizumi, and Toru Hasegawa

Graduate School of Information Science and Technology, Osaka University
Email: {h-masuda, k-kita, ykoizumi, t-hasegawa}@ist.osaka-u.ac.jp

Abstract—Verifying remote computing environments, such as
computing nodes in fog and edge computing, has gained consider-
able attention. This poster extends an existing remote attestation
method so that it can verify that obtained results are generated
by trusted computing nodes as well as remote computing nodes
are trusted.

I. Introduction
Remote computing is a useful approach to several applica-

tions like autonomous vehicles. Though remote computing used
to be concentrated on clouds, it is shifting towards network
edges, i.e., cloud to fog and edge computing, and ultimately
edge routers [1]. Such computing environments may contain
untrusted computing nodes.
To realize reliable computing, it is indispensable to verify

two factors: One is that computing nodes are trusted and the
other is that obtained results are truly generated by the nodes.
Remote attestation [2], which verifies a computing node, is one
of the promising approaches. However, existing methods can
verify the former but cannot do the latter.

This poster develops a program execution attestation method
by extending an existing remote attestation method so that it
verifies not only that computing nodes are trusted but also
that obtained results are generated by the trusted computing
nodes. The key contributions of the paper are twofold: First,
we realize an attestation method that verifies returned results
as well. Second, we generalize the attestation method so that it
is applicable to computing environments where nodes delegate
a part of the requested program to other nodes.

II. Computing model, Threats and Countermeasures
1) Computing Model: Nodes that request a program and are

requested to execute a program are referred to as requesting
and computing nodes, respectively. A requesting node, RNP ,
requests a computing node, CNP , to execute a program, P, and
CNP returns the result of P, RP , to RNP . P may consist
of several programs {P1, · · · ,Pn}, and CNP can delegate
their execution to {CNP1, · · · ,CNPn }, as shown in Fig. 1.
In this case, CNP behaves as both a computing and a
requesting node. CNP receives the results of the delegated
programs,{RP1, · · · ,RPn }, from the computing nodes, finalizes
the execution of P by using the results, and returns RP to RNP .
Note that programs {P1, · · · ,Pn} may also consist of several
programs and {CNP1, · · · ,CNPn } can delegate them to other
computing nodes.

Request 𝑷𝟏, ・・・, 𝑷𝒏Request 𝑷

Return 𝑹𝑷 Return 𝑹𝑷𝟏 , ・・・, 𝑹𝑷𝒏𝑹𝑵𝑷
𝑪𝑵(𝑷𝟏, ・・・, 𝑷𝒏)

𝑹𝑵(𝑷𝟏, ・・・, 𝑷𝒏)𝑪𝑵𝑷,

Do not return the correct result

・Execute a wrong program
・Do not execute the requested program
・Do not delegate a part of the program

Threat 1:

Threat 2:

Fig. 1. Computing model and threats

2) Threats: Threats in the computing model are twofold:
First, a computing node may not execute a requested program
correctly. This malicious behavior includes that the computing
node executes a wrong program and it neither executes the
requested program nor delegates a part of the program to other
computing nodes. The second threat is that a computing node
may not return correct results. Even if the computing node
executes a requested program correctly, there is still a risk that
it may return a wrong result.
3) Countermeasures: To cope with the aforementioned

threats, RNP must verify two factors: One is that CNP is
a trusted computing node and the other is that an obtained
result RP is truly generated by the computing node CNP . Note
that the word “trusted” represents that an entity conforms to
protocols and it does not behave maliciously. In this case,
verifying the first factor ensures that CNP correctly executes a
requested program P and correctly generates a result RP for P.
To verify the first factor, we adopt remote attestation [2],

which is a technique to verify that a remote computing
node is trusted. To verify the second factor, we extend an
existing remote attestation method so that it verifies that RP

is generated by a trusted node as well.
Note that our computing model enables computing nodes

to delegate the execution of a part of a requested program.
Each computing node that delegates other computing nodes
to execute programs verifies them as a requesting node. This
allows us to focus on the verification process between one
requesting node and one computing node.

III. Remote Attestation
Before describing our proposal, we explain remote attestation

based on a trusted platform module (TPM). A TPM is a tamper-
resistant security chip. It has capabilities of cryptographic hash
and public-key cryptography, including key-pair generation,
encryption, decryption, and digital signature. It also has978-1-7281-2700-2/19/$31.00 2019 © IEEE

registers, referred to as platform configuration registers (PCRs),
each of which stores a hash value.
TPM-based remote attestation assumes that the following

three elements are trusted: The hardware of a node, the TPM on
the hardware, and the first program like a boot program, which
is installed to a ROM device of the hardware. The fundamental
idea behind remote attestation is that a node is trusted if all
programs, including a boot program, a BIOS, a boot loader,
and an OS, that have been executed on the node are trusted.
Remote attestation generates verification information, which
consists of hash values of programs that have been executed on
a node, and verify all the generated hash values are the same
as those of trusted programs. Note that hash values of trusted
programs are computed in advance and they are assumed to
be known information.
Due to space limitations, we describe how to generate

verification information securely in the next section.

IV. Program Execution Attestation
1) Platform of Computing Nodes: The platform of comput-

ing nodes is based on hypervisor-based virtualization, such as
Xen and Hyper-V, and each program is executed on a dedicated
virtual machine (VM). We refer to such dedicated VMs as
computing nodes, hereafter. We assume that VMs are perfectly
isolated, and they cannot access the hypervisor and other
VMs. Computing nodes support the virtualized TPM (vTPM)
technology [3], and hence each VM has its exclusive vTPM.
2) Overview of Program Execution Attestation: The pro-

posed program execution attestation method is based on TPM-
based remote attestation. While TPM-based remote attestation
generates verification information regarding a computing node,
the proposed method does verification information regarding a
computed result as well as a computing node. By using the two
types of verification information, the program execution attes-
tation method verifies the two factors discussed in Section II-3.

3) Verification Information for Computing Nodes: Since the
platform of a computing node consists of a hypervisor and a VM
that executes a requested program P, verification information
for a computing node also consists of two types of information
about them. If both the hypervisor and the VM are verified, the
computing node is trusted. The first verification information
is made of hash values of all programs from the initial
boot program of the hardware of the computing node to the
hypervisor. The second verification information is made of hash
values of all programs from the initial boot program to the OS
of the VM and P. The hash values are securely stored to TPMs
or vTPMs as a hash chain, which comprises superimposed
hash values. While the first type of verification information is
stored on a TPM, the second type is stored to a vTPM.

A hash chain is generated on a PCR in a TPM/vTPM with the
PCRExtend command, which executes VPCR ← H(VPCR | |MI).
VPCR is the value of a PCR, MI is the hash value of a program
I, the operator | | represents bitwise concatenation, and H is a
cryptographic hash function. Each program is responsible for
computing the hash value of its next program and storing it
to the TPM/vTPM with the PCRExtend command. We assume

that the initial program is trusted and a trusted program
correctly computes and stores the hash value of the next
program. Under this assumption, the hypervisor and the VM
can be regarded as a trusted platform if all the hash chains
are the same as that of the trusted one.
4) Verification Procedure: Next, this subsection explains

the verification procedure when RNP requests CNP to execute
P, which is summarized in Fig. 2. At the side of CNP , it
generates the verification information as well as the result RP .
Next, CNP generates a return value A = (RP,VPCR,VvPCR) and
asks the TPM on the node to make a signature for A, Signks (A),
with its secret key ks. Note that the certificate of the public
key corresponding to ks is opened to the public by the vendor
of the TPM and everyone can verify the signature.

𝑷𝑪𝑹 678・・・

TPM Hardware

𝑷

5) Return
𝑹𝑷, 𝑽𝑷𝑪𝑹, 𝑽𝒗𝑷𝑪𝑹,
𝑺𝒊𝒈𝒏𝒌𝒔(𝑹𝑷, 𝑽𝑷𝑪𝑹, 𝑽𝒗𝑷𝑪𝑹)

vTPM
33C・・・

𝑹𝑵 𝑪𝑵

1) Request 𝑷
VM

𝒗𝑷𝑪𝑹

2) Create a vTPM
and boot a VM 3) Execute 𝑷 after

PCRExtend (𝑽𝒗𝑷𝑪𝑹||𝑴𝑷)

4) Generate 𝑺𝒊𝒈𝒏𝒌𝒔(𝑹𝑷, 𝑽𝑷𝑪𝑹, 𝑽𝒗𝑷𝑪𝑹)

Hypervisor

Fig. 2. Generation of Verification Information

When RNP receives A, it first verifies the integrity of A
with Signks (A) and it next compares the hash chains VPCR and
VvPCR with those of trusted ones. These two steps ensure that
CNP is a trusted node and RP is truly generated by CNP with
executing P.

V. Related work
Verifiable computation schemes also enable requesting nodes

to verify the correctness of computation requested to computing
nodes without TPMs [4]. Most of these schemes, however, are
unpractical in terms of computation and storage cost because
they rely on complex cryptographic schemes, such as fully ho-
momorphic encryption. Moreover, they do not assume the com-
puting model described in Section II, where computing nodes
can also delegate their computation to other computing nodes.

VI. Conclusion
This poster proposes a program execution attestation method

to verify that a computing node correctly executes a requested
program and the result is truly generated by the computing node.

Acknowledgements
This work has been supported by JSPS KAKENHI Grant

Number 18K11263.

References
[1] M. Król and I. Psaras, “NFaas: Named function as a service,” in

Proceedings of ACM ICN, Sep. 2017.
[2] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn, “Design and implemen-

tation of a TCG-based integrity measurement architecture,” in Proceedings
of USENIX Security Symposium, Aug. 2004.

[3] S. Berger, R. Cáceres, K. A. Goldman, R. Perez, R. Sailer, and L. van
Doorn, “vTPM: Virtualizing the trusted platform module,” in Proceedings
of USENIX Security Symposium, Aug. 2006.

[4] X. Yu, Z. Yan, and A. V. Vasilakos, “A survey of verifiable computation,”
Mobile Networks and Applications, vol. 22, pp. 438–453, May 2017.

