Hierarchical Congestion Control (HCC):
Cooperation of Uncorrelated Flows for Better
Fairness and Throughput

Shiva Ketabi, Yashar Ganjali

Department of Computer Science, University of Toronto

Abstract—Congestion control protocols face several challenges
for achieving max-min fairness and high throughput. First, each
flow has a limited view of the network state. In the absence
of a centralized congestion control entity, coordination is left
(directly or indirectly) to individual flows. Second, most flows are
very volatile by nature: flow rates/demands change significantly
from one instant to another. In this poster, we present a
hierarchical congestion control scheme to tackle these challenges.
We aggregate flows with low correlation in a hierarchical manner,
and recursively compute and allocate rates to these flows. Our
preliminary experimental results show significant promise in
terms of fairness and throughput.

I. INTRODUCTION

A common weakness of most congestion control protocols
is lack of cooperation and information sharing among flows.
Congestion control protocols that are distributed by design
delegate the task of congestion detection to individual flows.
These individual flows are required to estimate the congestion
state based on limited congestion signals they receive. These
signals, ranging from packet loss to variations in packet
round-trip latencies, are limited by nature given the limited
information provided (single or a few bits of information).

This limited view of individual flows and lack of coordina-
tion among flows make reaching optimal state challenging. In
particular, it is extremely difficult to reach optimum fairness
and throughput in short periods of time, especially for short-
lived flows. In contrast, let us imagine a congestion control
framework which has access to all congestion control signals
in the network, and can use this information to accurately
infer congestion state of individual flows. This, for example,
can happen if we have a logically centralized controller in
the network that collects all individual congestion signals and
globally allocates packet injection rates to individual flows,
(e.g. by solving an optimization problem aiming at maximizing
throughput while respecting fairness). Unfortunately, such a
centralized congestion controller has its own challenges as
gathering and processing information from a large number of
flows in a timely manner is not scalable.

A novel approach in this direction is RackCC [/1]] which uses
tunneling to aggregate all flows between pairs of top of rack
switches (i.e. ToR-ToR traffic) as a single JumboFlow. Rack-
level flow aggregation helps flows to combine their individual
limited knowledge of the congestion state and to collectively

978-1-7281-2700-2/19/$31.00 2019 © IEEE

agree on their optimum rates. Moreover, new flows, with no
prior knowledge of the network, can acquire the congestion
state of older flows and immediately set a near-optimal sending
rate instead of wasting time and resources searching for the
optimum rate.

In this poster, we propose Hierarchical Congestion Control
(HCC) a model for hierarchical aggregation of congestion sig-
nals among flows sharing bottlenecks in the network. HCC is a
generalization of RackCC which allows arbitrary aggregation
of flows rather than limited ToR-ToR flow aggregation. In
addition to being more general, HCC eliminates a fundamental
problem in RackCC: flows that share the same source and
destination racks are usually correlated. This is due to the
locality of applications (i.e. to enhance latency) and due to
the fact that these flows usually receive similar congestion
signals from the network. Instead, HCC aggregates flows based
on their correlation: the lower the correlation of any pair of
flows, the higher their chance of being aggregated in the same
group. Intuitively, the central limit theorem [2] suggests that
by aggregating an adequately large number of independent
flows, we will have a smooth and predictable distribution
of demand rates, as opposed to significant fluctuations in
aggregate demands of correlated flows.

II. FLOW AGGREGATION, RATE ALLOCATION

HCC consists of a flow aggregation phase running every
Thge seconds, and a rate allocation phase running every Tijoc
seconds. We assume Tiyjoc << Tigg.

Flow aggregation. The flow aggregation phase iteratively
merges the flows and produces an aggregation graph. It starts
with the set of all flows FO = {f2 f9 ... f%} as input,
generating a leaf node for each flow in the aggregation graph.
During the i-th iteration, it merges flows sharing a path whose
pairwise correlation is less than a threshold 6;, calculated using
Pearson Correlation Coefficient [2[]. The flows in each group

4 Sy [, are replaced with a single flow f;"’l in the
next iteration. The node representing f;-Jrl in the aggregation
graph is the parent of all flows it replaces.

Each flow f; is represented by (s%,d’, p}) representing its
source, destination, and a path between source and destination.
For the merged flow f;“, the associated path is the path
shared amongst all its children, and the first and last node
of this path are considered to be the source and destination of
this flow.

The aggregation phase is finished when no more flows
can be aggregated, or when ¢ reaches a predefined threshold
imax- In the following two cases, we explain each of these
termination conditions.

Case 1. Let us assume the aggregation is terminated at the
k-th iteration since there are no shared links among flows
fEfk o f]’f,k. Here, each congestion bottleneck can belong
to only one of these k-th level flows. Therefore, we can assign
the total bandwidth of the bottleneck to the corresponding flow,
and then recursively share the bandwidth amongst the children
of this flow at level k£ — 1. Since each flow in level k£ —1 might
be included in more than one flow in level k, i.e. it might
have more than one parent, it picks the minimum assigned
rate among all its parents as its rate. Each node then shares
its rate with its parents so that any excess bandwidth can be
redistributed to other flows which need it.

Case 2. If the iterations stop with ¢ = iy,x, We can use any
known congestion control algorithms to allocate flow rates
to the super-flows generated by the flow aggregation phase.
In other words, the set of flows in this iteration, i.e. F* =
{fi,f3,-.., &} can be considered as the only flows in the
network and we can run any known congestion control scheme
to allocate rates to them. RackCC [1]] is a simple example
here where %,,,, = 1. After one level of aggregation, RackCC
uses known congestion control mechanisms to allocate rates
to these ToR-ToR JumboFlows.

Rate allocation. The rate allocation phase consists of two
different rounds: congestion signal collection and congestion
reaction. These rounds are performed based on the child-
parent relations between flows in the aggregation graph. In
the congestion signal collection round, each parent receives
congestion signals form all its children, aggregates them, and
sends the aggregated congestion signal to its parents. In the
congestion reaction round, the action taken by each flow in
response to the congestion signals is pushed from each parent
to its children.

Fig. 1. An example topology

Example. Let us consider Figure |1| as an example. We have
a bottleneck link (n7,ng), and four flows fi, fa, f3, and fj.
Let us compare the following two different groupings:

Grouping 1. Merge fY and f) sharing the path
(ns,n7,n8,n9) and create f{ = {fY, f9}. Merge f9 and f)
sharing the path (ng,n7,ns,n10) and create fi = {f9, f}.
Note that this type of grouping does not follow our proposed
approach since it aggregates flows from the same rack which
are most likely correlated. In the next step, merge fi and fi

since they share the path (n7,ng) and create fZ = {fi, f1}.
Figure [2(a) shows the resulting aggregation graph.
Grouping 2. Merge fY and fJ sharing the path (n7,ng) and
create fi = {fD, fY}. Merge f9 and f{ sharing the path
(n7,ng) and create fi = {fY, f{}. Note that here we are
grouping uncorrelated flows. In the next step, merge fi and
f4 sharing the path (n7,ng) and create f2 = {f{, f5}. Figure
[2(b) shows the resulting aggregation graph.

(a) (b)

Fig. 2. Aggregation graphs. (a) correlated grouping, (b) uncorrelated grouping

III. EVALUATION

We implemented HCC in ns-2, and created a scenario
similar to Figure [I] with 100 flows (instead of 4 flows). The
simulations were run for 500 seconds, measuring fairness
(using Jain index [3]]) and throughput of each flow. Figure a)
shows the CDF of fairness among all flows. When uncorrelated
flows are grouped, 50% of flows have Jain index higher than
0.75 as opposed to 0.6 for correlated grouping (the higher the
Jain index, the more fair the algorithm is). Figure 3{b) shows
grouping uncorrelated flows also leads to higher throughput in
general.

IV. CONCLUSION

Our hierarchical design makes the overhead of coordination
of flows manageable, as we only need to deal with aggregated
flows rather than individuals. Also, since we aggregate flows
with low correlation, we are able to limit the variations in
the aggregate demand (central limit theorem). Coordination
among aggregate flows is also easier due to slower changes in
aggregate flow demands.

1.0
08
0.6

5

S
04

0.2

0'80 0.2 0.4 0.6 .
Jain fairness index

() (b)

Fig. 3. Comparison of correlated and uncorrelated groupings. (a) fairness (b)
throughput

REFERENCES

[1] D. Zhuo, Q. Zhang, V. Liu, A. Krishnamurthy, and T. Anderson, “Rack-
level congestion control,” in Proceedings of the 15th ACM Workshop on
Hot Topics in Networks. ACM, 2016, pp. 148-154.

[2] X. Wang, Y. Yao, X. Wang, K. Lu, and Q. Cao, “Carpo: Correlation-
aware power optimization in data center networks,” in 2012 Proceedings
IEEE INFOCOM. IEEE, 2012, pp. 1125-1133.

[3] R. Jain, A. Durresi, and G. Babic, “Throughput fairness index: An
explanation,” in ATM Forum contribution, vol. 99, no. 45, 1999.

