
Migration Scheduling in Distributed SDN
Controllers

Mohammad Amin Beiruti, Yashar Ganjali
Department of Computer Science, University of Toronto

Abstract—Load migration is essential in any distributed SDN
control platform due to natural load imbalance and dynamic
nature of input traffic. Existing solutions focus on migrating
a single switch between two controller instances. Migrating
multiple switches requires careful planning due to controller
resource constraints, and to ensure minimum service interruption
in the network. In this poster, we present a model and a solution
for migration scheduling, taking a set of switch migrations as
input, generating a migration schedule with respect to controller
resource and service interruption constraints.

I. INTRODUCTION

With a distributed control plane, having load imbalance
among different network controllers is inevitable. Recently,
new proposals have tried to address this issue through load
migration [1], [2]. In a nutshell, these solutions present safe
and reliable mechanisms to hand over a given switch from a
highly loaded controller to a lightly loaded controller in order
to reduce load imbalance in the control plane.

While migrating a single switch is straight forward, mi-
grating multiple switches at the same time is not trivial and
requires careful planning for two reasons. First, migrating a
given switch requires significant processing and memory at
source and target controllers. During the handover process,
the source of migration pauses processing any messages from
the switch. These messages are buffered and processed after
the handover [1], [2]. The memory needed for buffering and
CPU required to process these messages limit the number of
concurrent migrations that a particular controller instance can
handle. We call these limits controller resource constraints.

Additionally, we cannot migrate an arbitrary group of
switches at the same time. During the migration process,
any messages from the switch to the controllers involved
in migration are processed with a delay. In order to ensure
network services are not interrupted and network QoS is not
adversely affected, we need to avoid concurrent migration of
certain sets of switches. We refer to this as the QoS constraints.

In this poster, we present a model and a solution for mi-
gration scheduling problem. Our solution takes a set of switch
migrations as input and finds a schedule for migrating switches
in the shortest possible time, under controller resource and
QoS constraints.

II. SWITCH MIGRATION SPECIFICATIONS

Before formalizing the problem, we study the characteristics
of the protocol(s) that our scheduler is built on, as those

protocols can directly affect the complexity of our solution.
Existing switch migration protocols [1], [2] transfer a specific
switch from a master controller instance to a slave controller
instance [3]. The destination controller buffers all messages
from the switch during the migration process [1]. If failure
resilience is required, the source controller also buffers mes-
sages from the switch [2], providing a fall back mechanism in
case the destination controller fails during migration.

Once the role of the master and slave controllers are
changed, the new master processes all the buffered messages
before resuming its normal operation. This creates a transient
load that requires significant CPU usage. We associate a
positive weight to each switch migration to represent these
potential overheads.

III. PROBLEM MODEL

We assume switch migrations happen in several rounds. We
schedule switch migrations in a way that no conflicts exist
during each round. Our goal is to minimize the total number
of rounds required to complete all migrations, while respecting
controller resource and QoS constraints.

We model the switch migration scheduling problem as
an Integer Linear Program (ILP). We assume there are
n controller instances in the network, denoted by C =
{c1, c2, . . . , cn}, and m switches S = {s1, s2, . . . , sm}.
Inputs. Let us assume we have k different switch migrations
to schedule (M = {m1,m2, . . . ,mk}). The i-th switch migra-
tion, mi, has a weight of mw

i . To simplify our presentation,
let us consider two k × n binary matrices P and Q. We set
Pij equal to 1 if controller cj is the source of migration mi,
and equal to 0 otherwise. Similarly, Qij is 1 if controller cj
is the destination of migration mi, and 0 otherwise.
Controller Resource Constraints. Each controller instance
has resource constraints (memory and computational capacity)
limiting the maximum number of concurrent switch migrations
it can handle in each round. We denote this limitation by ai
for each controller instance ci.1

QoS Constraints. To satisfy QoS constraints, we need to
ensure switches associated with a specific service (or a
critical network path) are not all migrated concurrently. To
model these constraints, we consider l groups of switches
g1, g2, . . . , gl. Each group gi is also associated with a positive

1We model controller resource constraints as a one-dimensional value. It is
straight forward to extend this model to multiple dimensions.

number αi, that indicates the maximum number of concurrent
migrations that we can handle in this group without major
service interruptions. Each group has at least two switches, and
different groups can have non-empty intersections. We define
a binary matrix W with Wij equal to 1 when migration mi

is part of group gj .
Variables. Let us assume we have an upper bound, R, on the
number of rounds for executing all the migrations2. We use a
k × R binary matrix A to represent our schedule: Aij is set
to 1 if migration mi happens during round j, and Aij = 0
otherwise.
ILP Formulation. We define our problem as an instance of
an integer linear program as follows.
Objective Function: min

∑k
i=1

∑R
j=1Aij × ej . Here e is a

constant. We are taking the weighted some of the elements
of the matrix A. By exponentially growing the weights for
each round, we ensure there is pressure towards reducing the
number of rounds in the schedule.
Constraints:

1) ∀i, 1 ≤ i ≤ k :
∑R

r=1Air = 1. This constraint ensures
that each switch migration happens once and only once
in the schedule.

2) ∀i, 1 ≤ i ≤ n, ∀j, 1 ≤ j ≤ R :
∑k

t=1Atj ×mw
t ×Qti ≤

ai. This is for the destination controller’s resource limi-
tation. At each round, the sum of weights of migrations
associated with the same destination should not exceed
each destination controller’s available capacity.

3) ∀i, 1 ≤ i ≤ n, ∀j, 1 ≤ j ≤ R :
∑k

t=1Atj × mw
t ×

(Pti + Qti) ≤ ai. If we need failure resiliency, the
limitation of the source of migration will also matter.
In this case, this constraint will replace Constraint 2.
We note that a controller cannot simultaneously be a
source and destination of a particular migration, so Pti

and Qti cannot both be equal to 1.
4) ∀j, 1 ≤ j ≤ R,∀u, 1 ≤ u ≤ |G| :

∑k
i=1Aij ×Wiu ≤

αu. This ensures QoS constraints, i.e. for each group
of conflicts, gu, the number of migrations of this group
does not exceed the predefined limit of αu.

5) ∀i, 1 ≤ i ≤ k,∀j, 1 ≤ j ≤ R : Aij ∈ {0, 1}.
If there is a feasible solution, our ILP will return a schedul-

ing plan with the minimum number of rounds.

IV. EVALUATION

To evaluate our proposed scheduling scheme, we created a
sample scenario with 5 controller instances and 15 switches.
The topology, controller resource constraints, and QoS con-
straints are shown in Figure 1. Before any migration happens,
each controller instance is responsible for three switches
(dashed lines represent this relationship). Our goal is to
perform 10 switch migrations (m1,m2, ...,m10), represented
by arrows pointing towards the destination in Figure 1. We
assume all of these migrations have the same weight equal to
1.

2Clearly, the number of switch migrations is a bound, but in practice, we
expect a much lower bound depending on the constraints.

Fig. 1. Network topology, as well as resource and Qos constraints.

We also consider 4 different groups for QoS constraints,
each group is represented by a different shape in the figure.
Migrations with the same shape belong to the same group of
constraints. In this example, ∀i, αi is set to 1.

Existing solutions that do not consider migration scheduling
will resort to executing one migration at a time to avoid
conflicts and resource limitations. In this example, this will
require 10 rounds to complete all switch migrations. Using
a simple ILP solver, we were able to find a schedule that
completes these 10 switch migrations in only 4 rounds. Here,
the optimally of 4 rounds is obvious, as g1 has 4 members
and α1 = 1 ensures we cannot schedule any of these 4 switch
migrations in the same round. This is meant to serve as a
preliminary example that shows the potential benefits of the
proposed scheme.

V. CONCLUSION

Reducing the total migration time can have a major impact
on the efficiency of the SDN control plane. In this poster, we
presented a model and a solution for switch migration in a
distributed SDN control platform. This complements existing
work on single switch migration by carefully planning switch
migrations. We presented a simple example to highlight the
potential benefits of the proposed scheme. Further enhance-
ments to run-time (including techniques to solve the problem
in a distributed manner, or heuristics for faster convergence)
are left as future work.

REFERENCES

[1] A. Dixit, F. Hao, S. Mukherjee, T. V. Lakshman, and R. R. Kompella,
“ElastiCon; an elastic distributed SDN controller,” in 2014 ACM/IEEE
Symposium on Architectures for Networking and Communications Sys-
tems (ANCS). New York, NY, USA: IEEE, 2014, pp. 17–27.

[2] M. Beiruti and Y. Ganjali, “Load Migration in Distributed
SDN Controllers,” Systems and Networking Group, University of
Toronto, Tech. Rep. TR19-SN-UT-0801-01, Aug. 2019. [Online].
Available: http://www.cs.toronto.edu/ yganjali/TR-SN-UT/TR19-SN-UT-
0801-01.pdf

[3] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

