
Intentionality-related Deep Learning Method in
Web Prefetching

Wenbo Zou, Jiwoong Won, Jemin Ahn, and Kyungtae Kang
Dept. of Computer Science and Engineering

Hanyang University, Republic of Korea
{munbak, jiwoongwon, ahnjemin, ktkang}@hanyang.ac.kr

Abstract—Many prediction models have been proposed to
improve the effectiveness of web prefetching for reducing the
response time perceived by users when browsing the web. Most
of these models are based on structure learning and are applied at
the client side. Currently, considerable attention is being paid to
proxy-based prefetching because it is more effective and accurate
in predicting the correlated pages of many websites of similar
interest for more homogeneous users. Compared with client-
based prefetching, more complex prediction tasks must run in
the proxy, which implies that a more powerful prediction model
is required. Thus, based on the time-series characteristics of
browsing records, we proposed the intentionality-related long
short-term memory (Ir-LSTM) model, which combines both
the Skip-Gram embedding method and the LSTM model while
expanding the input features with user information. We also
propose a novel dynamic allocation module for detecting real-
time traffic bursts and correspondingly adjusting the correlation
coefficient of the model’s output to achieve higher server-side
resource utilization while fully maximizing hit ratio.

Index Terms—Web prefetching, Web prediction model,
Intentionality-related long short-term memory (Ir-LSTM)

I. INTRODUCTION

Web prefetching can predict and prefetch relevant web
objects that users may visit in the near future by consider-
ing their access patterns, thereby effectively reducing user-
perceived latency. Different prediction models such as web-
link analysis [1], [2], which refers to the structure of the web
page and the frequency distribution of the user’s browsing
records, have been proposed, but few studies have investigated
time-series inputs based on users’ prior access frequency. Re-
cent structure-learning-based methods consider the time-series
historical records of users’ web visits, and methods based on
a Markov chain model, hidden Markov model (HMM), and
graph are widely used for time-series inputs [3]. However, the
different types of users and webpages browsed complicate the
prediction task on proxy servers.

This study develops an intentionality-related long short-term
memory (Ir-LSTM) model as a prediction method. The model
input integrates both webpages’ and users’ information (e.g.,
webpage title, IP address, and time). To achieve a higher
resource utilization, the prediction model only outputs valuable

This research was supported by the Basic Science Research and Next-
Generation Information Computing Development Programs through the Na-
tional Research Foundation of Korea (NRF) funded by the Ministry of Science
and ICT (NRF-2017R1A2B4007970, 2017M3C4A7083676)

IP, Time, etc.

Embedding Layer

URL1, URL2, …, URL𝑛

Skip-gram
Embedding Layer

Anchor Text, Title

Embedding Layer

Topic Clustering

Request1
Request2
Request3

…
Request𝑡

Concatenation DNN

Softmax

LSTM
Module

[𝑃𝑠𝑘𝑖𝑝,𝑃𝑙𝑖𝑛𝑘1 ,𝑃𝑙𝑖𝑛𝑘2 ,⋯ ,𝑃𝑙𝑖𝑛𝑘𝑣]

Request: Requests made at time interval 𝑡
𝑡: Time interval
𝑛: Number of URLs requested at time interval 𝑡
𝑣: Number of unique links to be prefetched
𝑃𝑠𝑘𝑖𝑝: Skip probability
𝑃𝑙𝑖𝑛𝑘: Prediction probability

Fig. 1. Overall structure of prediction model.

links having large size or high latency. A dynamic allocation
module including a real-time traffic burst detector and a dy-
namic allocation mechanism is developed to correspondingly
adjust the output parameters, namely, the number of links in
the output vector that include the prediction probability for
each link and the skipping threshold. In this module, a bloom
filter and count-min (CM) sketch methods are used for real-
time detection and calculation of streaming data. By using
this dynamic allocation module, the prediction model not only
maximizes the resource utilization to achieve a higher hit ratio
but also ensures that the server will not be overloaded.

II. IR-LSTM

Before training the model, all output labels are divided
into two categories: prefetching and skipping. All links in the
datasets are filtered by their size and latency. Links larger
than 50 KB or with latency higher than 1.5 s are added to the
prefetching list whereas others are labeled with “skip.”

A. Prediction Model

Fig. 1 shows the schematic of our Ir-LSTM module. The
time-series inputs of accessed information are divided into
three parts: URL, IP/timestamp, and webpage title. First, the
URL is encoded via a Skip-Gram layer, which is one of
the embedding structures in Word2Vec [4]. This embedding
enables quantitative measurements of the relationship between
links. After training the Skip-Gram neural networks, the cur-
rent input URL is encoded into vector Vt by mapping via its
hidden layer matrix W . Then, Vt is provided to the LSTM
module, where a cell unit set is used to store the calculated
value of the former input. The LSTM module has three types
of gates, which are used to control the memory, forgetfulness,
and output ratio of the current information. Finally, the current
output ht is obtained.978-1-7281-2700-2/19/$31.00 2019 © IEEE

The other two inputs are processed through different em-
bedding layers. Preprocessing steps such as geolocating the
IP address and mining and clustering (k-nearest neighbors)
methods for topic classification of the title are also imple-
mented. Then, the new embedded vectors are added to the
output of the LSTM module ht to form the input vector V
([ht, Vtime, VIP, Vtype]) of a two-layer neural network model.
The model finally outputs a probability distribution that each
link will be prefetched and the skip probability, using a
SoftMax function (see Fig. 1).

B. Dynamic Allocation Module

In the dynamic allocation module, we use a Bloom filter to
monitor the accessing load. The bloom filter returns whether
each link is in the prefetching list or not (1 or 0, respectively).
The load Ct at time interval t is calculated by (1), where Si

is the size of link i, and nl,t is the number of links at time
interval t. The allocation trigger is activated when the gradient
vector |∇Ct| is greater than the given burst threshold.

Ct =

nl,t∑
i=1

Si ∗ Bloom Filter(linki). (1)

Once activated, the repetitive rate is calculated based on the
CM sketch algorithm, which can output the frequency of each
link in the prefetching list. For all links in the list, the repetitive
rate is η = B/M , where M is the total frequency obtained
from all results of the CM sketch and B is the sum of the
return values of the bloom filter. The trained Ir-LSTM model is
used to search for the most appropriate variables [npf (number
of links to be prefetched) and σs (skipping threshold)] in the
testing set that can not only reach the maximum hit ratio but
also satisfy (2).

npf × η × FS(σs)× Ct < Rub, (2)
where FS is a mapping function that returns the skipping ratio
of the model and Rub is the resource upper bound.

III. PRELIMINARY EXPERIMENTS

For the implementation, dropout and regularization methods
are used in the training process to overcome the overfitting
problem. The Adam optimizer is selected for the gradient
descent process, and the gradient clipping method is used
for the exploding gradient problem. The data used in this
article is taken from HTTP requests from different users at
Boston University (BU) in 1995. The link information of each
request is preprocessed, including culling adjacent identical
links and merging sub-paths of a second child from the root
URL. In addition, by filtering the links labeled “skip,” the
number of output links is reduced by 93.8%, the training speed
is improved by 46.7%, and the hit ratio is increased by up to
20%.

Ibrahim and Xu [2] compared several approaches by using
BU benchmarks: graph, Markov chain model, and HMM.
HMM achieved the best results in most tests. To evaluate
the performance of the Ir-LSTM, we compared it with HMM
in terms of the skipping ratio, wasting ratio, hit ratio, and
accuracy. Fig. 2 shows the obtained results, which indicate

Fig. 2. Comparison among HMM, LSTM, and Ir-LSTM in terms of skipping,
wasting, and hit ratios and accuracy.

TABLE I
OVERLOADING STATUS IN BOTH THE FIXED AND DYNAMIC MODES

Fixed Mode Dynamic Mode
Resource Utilization 32.1% 49.2%
Overload Amplitude 91.8% 37.1%
Overload Frequency 3.1% 2.0%

that deep-learning models outperform HMM in terms of hit
ratio, the main evaluation parameter, by nearly 27%. Further,
the Ir-LSTM model provides a higher hit ratio than the pure
LSTM model. In terms of the skipping ratio, HMM and LSTM
show better results than Ir-LSTM. However, by controlling
the skipping threshold (an example for a threshold of 0.25
is shown; the result can still be improved), all skipping ratio
and wasting ratio results become very similar (88% and 31%,
respectively). Ir-LSTM still outperformed pure LSTM by 1.4%
in terms of the hit ratio.

To test the effects of the dynamic allocation mode, we
simulate a data streaming environment based on the BU
benchmarks. Here, the unit of time is 10 s, bursty value is
250 MB, and Rub is 4.5 GB. A comparison is performed with
the fixed parameter mode with σs = 0.7 and npf = 8. Table
1 shows the loading status at each mode; the overloading
status in the dynamic mode is far superior to that in the
fixed mode. The dynamic mode is stable at the resource
upper bound and has lower overloading time. Further, in
the prefetching simulation experiment, owing to the higher
resource utilization, the dynamic mode achieves a higher hit
ratio of 87% compared to the average hit ratio of 84.9% in
the fixed mode.

IV. FUTURE WORK

In future work, a gradient ascent method will be considered
to find the best parameter set more quickly without traversing
all results in the testing set. Further, the prediction module
can be further improved by mixing both structure-learning and
deep-learning methods.

REFERENCES

[1] S. Zhong and J. Ghosh, “A unified framework for model-based cluster-
ing,” J. Machine Learning Research, vol. 4, pp. 1001–1037, 2003.

[2] T. I. Ibrahim and Cheng-Zhong Xu, “Neural nets based predictive
prefetching to tolerate WWW latency,” in Proc. 20th IEEE International
Conference on Distributed Computing Systems, pp. 636–643, 2000.

[3] A. Gellert and A. Florea, “Web page prediction enhanced with confi-
dence mechanism,” J. Web Engineering, vol. 13, pp. 507–524, 2014.

[4] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representation in vector space,” arXiv preprint: 1301.3781, 2013.

