
ReDiCom: Resilient Communication for
First Responders in Disaster Management

Jiachen Chen∗, Yuxuan Xing†, K.K. Ramakrishnan‡, Mohammad Jahanian‡, Hulya Seferoglu†, and Murat Yuksel§
∗WINLAB, Rutgers University †University of Illinois at Chicago
‡University of California, Riverside §University of Central Florida

I. INTRODUCTION

Effective communication among first responders during and
in the aftermath of a disaster can affect outcomes dramatically.
We seek to build a resilient architecture that allows first
responders to communicate even with: 1) damage to infrastruc-
ture — civilian and / or specialized communication facilities
may be damaged by the disaster, and 2) dynamically formed
groups — first responder teams may be formed dynamically
in response to a disaster and team member addresses (e.g.,
phone numbers, network addresses) may not be known to
one another. We propose a resilient network architecture that
allows efficient communication among first responders during
and after a disaster [1]. We seek to support dynamically
formed groups for incident response, allowing first responders
to securely and conveniently communicate based on roles
(names). The architecture supports communication in disasters
by 1) building resilience into the framework across all the
layers, 2) creating a framework that allows communication
by role and identity, rather than addresses, 3) supporting
multiple modalities (data, voice) for communication among
dynamically formed first responder teams, and 4) providing
robust and resilient communication and computing even when
facilities are error- and disruption-prone.

In our demo, we will show an emulated disaster manage-
ment situation with a remote command center, and a data mule
that shuttles between the command center and a shelter. We
will demonstrate the resilient network architecture, including:
1) propagation of the namespace across fragmented networks,
2) device-to-device (D2D) communication software that can
utilize heterogeneous wireless links (i.e., Bluetooth and WiFi
Direct), and 3) coded cooperative computing mechanisms in
heterogeneous and time-varying environments.

II. DEMO ARCHITECTURE

To achieve the above functions, we designed a layered archi-
tecture to allow for flexibility in adapting each layer as needed
to support different functionality at the lower layers (e.g., dif-
ferent network layers and different link layers). From bottom
to top, the architecture has the following layers (see Fig. 1):

The link layer exploits D2D communication to complement
infrastructure-based communications. It provides a generic
“link” abstraction to the upper layer, providing connectivity no
matter what the underlying technology is: WiFi, WiFi-Direct,
Bluetooth or infrastructure-based cellular or wired network
connections. The identity in this layer is NeighborID, a
variable-length device ID.

Messaging Coded Computation

Naming Layer

Network Layer (Gossip & Routing)

Link Layer (D2D Communication)

WiFi BluetoothWiFi-Direct

TCP/UDP TCP/UDP RFCOMM

In
te

r-
M

o
du

le

C
o

m
m

u
n

ic
at

io
n

Fig. 1: Architectural view of ReDiCom.
The network layer supports data dissemination using flat

identifiers over both connected and delay-tolerant links. It
provides a “connected network” abstraction to the upper layer.
The identity in this layer is Name (a fixed-length flat identifier
independent of the location, similar to MobilityFirst [2]).

The naming layer maintains a graph-based namespace and
performs name expansion for handling publications (similar to
the protocol in [3]). It provides an abstraction of “connected
names” to the applications. The identity in this layer is also a
Name, but with graph-based relationships among them.

Applications are supported by the application layer. A
messaging app allows first responders to communicate using
the graph-based namespace. A coded computation app allows
first responders to perform compute-intensive tasks with the
assist from nearby helpers.

To assist the communication between layers, we imple-
mented an inter-module communication component which
mimics the Context-based broadcast in Android, but with
lower overhead and no limitation on the object size.

III. DEMO TOPOLOGY AND SCENARIO

We assume a disaster happens requiring first responders to
assemble teams for search and rescue. We have two places:
a coordination center and a shelter which does not have
communication infrastructure support (see Fig. 2). At the
coordination center, we have an Incident Commander that
takes control of managing the disaster and a Dispatcher that
dispatches units upon instructions from the commander. In the
shelter, we have several first responders. All the connections in
the shelter are based on D2D communication via either WiFi
Direct (orange connections) or Bluetooth (blue connections).
A Patrol Car travels between the coordination center and
the shelter to carry messages around, acting as a data mule. We
emulate the patrol car movement by manually connecting (and
disconnecting) the device with (and from) the Coordination
Center or Rescue 1 in the shelter.
A. Messaging

To setup a search and rescue team, the Incident Comman-

der can choose to create a set of names based on predefined978-1-7281-2700-2/19/$31.00 2019 c© IEEE

Fig. 2: Topology used in the demo. Blue links represent Bluetooth
connections; Orange links represent WiFi connections; Patrol car
moves between the Coordination Center and the Shelter.

templates. All the names in the selected template will be
added to the namespace with random naming layer Names.
Corresponding meanings (the human-readable name and type
for each name) are maintained in the messaging app.

The Dispatcher dispatches units by drag-and-drop of
names (roles) to particular individuals available in the different
organizations. The messaging app keeps track of the new rela-
tionships and delivers events to the naming layer (and further
to the Gossip module). At the same time, the Incident

Commander can see the updates since they are in the same
connected sub-net. However, none of the first responders in the
shelter would see them yet as they are physically disconnected.
Once the units are dispatched, the Incident Commander can
send messages (or push-to-talk) to the roles (or the groups).
These messages will be synchronized on all the devices in the
Gossip module, including the Patrol Car which is also in
the coordination center at the beginning.

Once the Patrol Car connects to the shelter (Rescue
1), the namespace of each device in the shelter will be
updated (can be seen on the GUI of Field Officer and
first-responder smartphones). The role-based messages from
the Incident Commander will also be delivered to the
corresponding first responders. The first responders can talk to
each other based on their new roles, and the communication
can be delivered over multiple communication technologies
(WiFi-Direct and Bluetooth) and multiple hops (in Bluetooth).
They can also send buffered messages to the Incident

Commander. The Field Officer can modify the namespace
(e.g., add another first responder into the incident namespace).
When the Patrol Car returns to the coordination center,
the updates on the namespace and the messages sent back
will be reflected on the GUI of Incident Commander.

B. Coded Computation
We built two distributed computation applications on top of

the naming layer: face recognition and matrix multiplication.
The devices in the resilient network form a master/helper
cluster. Master devices offload computation tasks to helper
devices via D2D connections. The helpers are detected via
the pub/sub mechanism.

For face recognition, a master device wants to identify a
target person from a set of images taken in the shelter. The
master distributes images to helpers and the helpers responds
with labels and confidence. After the master gathers all the
information, it outputs the closest match of the target person

(a) Link layer (b) Messaging (c) Coded computation

(d) Messaging on PC/Tablet

Fig. 3: Screen shots of ReDiCom.

in the database. Depending on the processing and transmission
delay of different helpers, the master device allocates workload
dynamically to adapt different helpers.

For matrix multiplication, we assume that the master device
wants to compute a matrix multiplication; y = Ab, where A
is a matrix, and b is a vector. The master divides the matrix
row-wise equally into two parts A1 and A2. The master sends
A1, A2, and A1 + A2 (coded matrix) to three helpers. Also,
vector b is sent to all helpers. Helpers calculate A1b, A2b,
and (A1 +A2)b in parallel. Note that the master device only
needs to retrieve the result from the fastest two helpers to
calculate y = Ab. Thus, the master can avoid waiting for the
slowest helper, which reduces the overall delay.

C. GUI
Fig. 3 shows several screen shots from the demo. The link

layer GUI (Fig. 3a) allows the user to control the connected
neighbors. The Messaging GUIs (Fig. 3b and 3d) allow first
responders send text and push-to-talk messages based on roles.
The GUI of coded computation (Fig. 3c) allows user to select
target person in the shelter and displays the person found.
Figures of the other components are not shown due to the
space limitation.

ACKNOWLEDGEMENT
This work was supported by the US NIST (award

70NANB17H188).
REFERENCES

[1] J. Chen et al., “CNS: Content-Oriented Notification Service for Managing
Disasters,” in ICN, 2016.

[2] A. Venkataramani et al., “MobilityFirst: A Mobility-Centric and Trust-
worthy Internet Architecture,” SIGCOMM, 2014.

[3] M. Jahanian et al., “Graph-based Namespaces and Load Sharing for
Efficient Information Dissemination in Disasters,” in ICNP, 2019.

