Load Migration Protocol for SDN Controllers

Mohammad Amin Beiruti, Yashar Ganjali
Department of Computer Science, University of Toronto

Abstract—The dynamic nature of network traffic can lead to
load imbalance amongst controller instances in a distributed SDN
controller. A highly loaded controller instance can be slower in
responding to datapath queries, and can slow down the entire
control platform. In this poster, we present a new and efficient
load migration protocol for shifting input load associated with
overloaded controller instances towards lightly loaded instances.
Unlike existing protocols for load migration, our protocol ensures
consistency among controller instances, and can handle failures
during migration procedure. Our protocol reduces the migration
time by 20-55%, and the migration buffer size by 10-15%.

I. INTRODUCTION

Modern SDN solutions rely on distributed controllers to
enhance resiliency to failures, and to decrease response times
in large-scale networks. In any distributed controller, different
controller instances can have unbalanced load due to natural
difference in arrival rates of switches in various topological
layers, as well as fluctuations in network traffic. The natural
solution to the load imbalance problem is to shift some of
the input load associated with overloaded controller instances
towards lightly loaded controller instances.

The first protocol for switch migration between controller
instances was introduced by Dixit et al. [1]. They proposed
a 4-phase protocol to hand over a given switch between two
controllers instances. This protocol relied on OpenFlow [2] as
the API between controllers and datapath elements, and was
later used as a primitive for load balancing, power saving, and
resource allocation in several solutions.

Unfortunately, this 4-phase protocol has several shortcom-
ings. First, it does not cope with failures during the handover
period. Second, the 4-phase protocol focuses only on two
controller instances (source and destination of migration which
are in master and slave modes respectively) rather than the
entire system as a whole. During migration, there might
be controller instances in equal mode that are supposed to
have identical states to the master controller (see OpenFlow
1.5 specifications [2]). By ignoring these equal controller
instances, the 4-phase protocol leads to inconsistent views
in the equal-mode controller instances. The problem becomes
worse in the presence of failures, as one of these equal-mode
controller instances might be elected as the new master.

In this poster, we introduce a new 3-phase protocol for load
migration in distributed SDN controllers. Unlike the previous
4-phase protocol, our protocol is resilient to failures, and
ensures all other controller instances in equal mode are kept
in a consistent state. Our design leads to 20-55% reduction
in migration times, and 10-15% improvement in buffer size
requirements.

Equal(s) Initial Master Switch Final Master

Start Signal Start Signal

Role. Request_EQ“a

Role_Reply
Controller Status
s

Start Buffering

Phase 1

Controller_Status

Controller_Status

g W

Barrier_ReqUQSt

start B n

Barrier_Reply

Phase 2

\

s
Role Requestr\\/\aste

End of migration Role_Status Role_Reply Phase 3
ear butrier
ller_Status C
Controller_Status _cm«,r",_/ ontroller_statys

" Start Processing
Start Processing Start Processing

Fig. 1. Newly proposed 3-phase protocol.

Control State in SDN. The control plane is expected to
keep the state of various network applications. The details
of how this state is preserved depends on the design of each
SDN controller platform, but regardless of these details, the
control state can be categorized as follows. Each SDN switch
contains some control state called switch state accessible by
controller instances (e.g. packet/byte counters). Depending on
the control platform’s design, network controller application
state might be stored in a simple key-value store or a shared
storage system. The control platform ensures reliability and
consistency of this storage. Each controller instance has some
ephemeral local control state not managed by the control
plane. If the controller instance fails, this state is lost. We need
to ensure this state is transferred to a new controller during
migration.

II. DESIRED PROPERTIES

In order to ensure the control plane does not end up with a
corrupt view of the network state during the migration process,
there are several properties that we need to uphold:

Safety. Every asynchronous message should be responded by
at most one controller.

Serializability. Controller instances should process messages
of each switch in the same order they are received by the
control plane.

Liveness. Each switch has to have one active master controller
at all times.

Failure Resiliency. If the destination controller instance fails
during migration, the initial master instance should be able to
resume normal operation without losing state.

Consistency. The master controller’s view of a specific switch
should be compatible with the view of all equal controllers.



600

500

400

300 m 4-Phase

3-Phase-End 1
200 259
3-Phase-End 2

Porotocol Running Time

100

12.188 6.6 125 9 6.7
0 — ——
Low Medium High

Controller Load

Fig. 2. Migration run-time.

This is to ensure equal mode controllers can take responsibility
of the switch during overload, or failures.

III. NEwW 3-PHASE PROTOCOL

The previously known 4-phase protocol [1] only has safety,
serializability, and liveness properties and does not support
failure resiliency, and consistency. Without these properties,
the state of any controller instance in equal mode might not
match that of the master controller, and the 4-phase protocol
cannot handle failures during the migration process.

Figure 1 shows our new 3-phase protocol for shifting the
load of a given switch from its master controller instance
to a slave. Unlike the 4-phase protocol, the initial master
controller buffers incoming messages during the migration in
order to ensure the state of the controller can be recovered
in case of failures. This buffer also serves as a coordination
mechanism between two controller instances, which is why we
can eliminate a complete phase in our proposal. Also, unlike
the 4-phase protocol, we explicitly deal with controllers in
equal mode and ensure their state is kept up-to-date during
the migration process.

Phase 1. The initial master controller initiates the migration.
The final master requests a role change from slave to equal.
After processing the role request message, the switch sends a
Role_Reply message back to the final master.

Phase 2. After the initial master receives the Controller_Status
packet, it starts buffering any messages from the switch. The
initial master sends a copy of its local state to the final master.
Any changes in state beyond this point is replicated on the
final master. The initial master sends a Barrier_Request to
make sure the switch does not have any pending requests.
When the initial master receives the Barrier_Reply from the
switch, it can safely signal the final master to hand over the
responsibility.

Phase 3. Once the final master controller receives the end of
migration signal and after processing the local state messages,
it sends a Role_Request message to the switch. The switch
changes the role of the current (initial) master to slave (and
informs it with a Role_Status message). It also grants the
master role to the final master controller instance. The switch
broadcasts a Controller_Status message to all its correspond-

3000

2500

28085
2000 =

1500
m 4-Phase

Buffer Size

1000 3-Phase

500

169 14 47 39.8

Low Medium High
Controller Load

Fig. 3. Migration buffer size.

ing controllers including equal and slave mode controller
instances.

Desired Properties. We can formally prove that the 3-phase
protocol supports all five desired properties. The details are
omitted due to space limitations.

IV. EVALUATION

We designed and implemented an object-oriented distributed
SDN simulation environment with OpenFlow support for
evaluating our protocol. The blue and orange bars in Figure 2
show the running time of the 4-phase and 3-phase protocols.
The new protocol has a 20-32% shorter running time, despite
the fact that the 4-phase protocol misses failure resiliency and
consistency properties. The gray bar in Figure 2 represents a
simplified version of the 3-phase protocol that does not support
resiliency and consistency (to provide apple-to-apple compar-
ison). The simplified protocol runs in less than 50% of the
time for the 4-phase protocol. Interestingly, the improvement
in running time is higher under higher load scenarios.

Figure 3 shows that the new protocol requires 10-15% less
buffering compared to the 4-phase protocol. This is due to
the fact that the 3-phase protocol is completed faster, and
therefore, the migration buffer has less time to grow.

V. CONCLUSION AND FUTURE WORK

In this poster, we presented a new 3-phase protocol for load
migration in distributed SDN controllers. Our protocol is faster
and requires less memory compared to the existing 4-phase
protocol. Possible directions for the future of this work include
designing protocols for other combinations of master, equal,
and slave mode instances, as well as techniques to combine
these protocols to transform a controller plane to a desired
state (e.g. for load balancing, or resource optimization).

REFERENCES

[1] A. Dixit, F. Hao, S. Mukherjee, T. V. Lakshman, and R. R. Kompella,
“ElastiCon; an elastic distributed SDN controller,” in 20/4 ACM/IEEE
Symposium on Architectures for Networking and Communications Sys-
tems (ANCS). New York, NY, USA: IEEE, 2014, pp. 17-27.

[2] A. Nygren, B. Pfaff, B. Lantz, B. Heller, C. Barker, C. Beckmann,
D. Cohn, D. Malek, D. Talayco, and D. Erickson, “Openflow switch
specification version 1.5. 1,7 Open Networking Foundation, Tech. Rep.,
2015.



