
Optimal Strategies for Live Video Streaming
in the Low-latency Regime

Liyang Sun*, Tongyu Zong*, Yong Liu*, Yao Wang*, and Haihong Zhu**

*{ls3817, tz1178, yongliu, yw523}@nyu.edu, Tandon School of Engineering, New York University
**hzhu@futurewei.com, Futurewei Technologies

Abstract—Low-latency is a critical user Quality-of-Experience
(QoE) metric for live video streaming. It poses significant
challenges for streaming over the Internet. In this paper, we
explore the design space of low-latency live video streaming by
developing dynamic models and optimal control strategies. We
further develop practical live video streaming algorithms within
the Model Predictive Control (MPC) framework, namely MPC-
Live, to maximize user QoE by adapting the video bitrate while
maintaining low end-to-end video latency in dynamic network
environment. Through extensive experiments driven by real
network traces, we demonstrate that our live video streaming
algorithms can improve the performance dramatically within
latency range of two to five seconds.

Index Terms—live streaming, chunk-base encoding

I. INTRODUCTION

Video currently accounts for more than 70% of the Internet
traffic. It is projected that 82% of the Internet traffic will
be made up of video in 2022, and live video streaming will
contribute 17% of the Internet traffic [2]. To deliver a high
level of user Quality-of-Experience (QoE), video needs to
be streamed at high rate while avoiding video freeze and
minimizing rate fluctuations. For live streaming, users are
additionally sensitive to the end-to-end video latency, namely
the time lag from the moment when a video scene occurs till
a user sees it on her screen. In the traditional TV broadcast
system, the video latency with mean of 6 seconds could be
achieved [3]. By contrast, the live streaming latencies on Over-
the-Top (OTT) devices range from 10 to 30 seconds [4]. This
long video latency could be detrimental for user QoE.

In this paper, we explore the design space of low-latency live
video streaming by developing dynamic models and optimal
control strategies. We further develop practical live video
streaming algorithms within the Model Predictive Control
(MPC) framework, namely MPC-Live, to maximize user QoE
by adapting the video bitrate while maintaining low end-
to-end video latency in dynamic network environment. To
minimize the end-to-end latency, chunk-based video packaging
and streaming [5] are adopted in our system. Each video
segment (1 second duration) is divided into multiple shorter
video chunks (200 ms duration), and the processes of en-
coding, streaming and decoding are operated in a pipelined
fashion. MPC algorithm [6] is developed for online bitrate

The full version of this paper is available at [1]. This work was partially
supported by USA NSF under contract CNS-1816500.

adaption based on the current system state and the predicted
network conditions to strike the desirable balance between
video quality, playback latency, video freeze and skip. Our
main contributions are as follows:

1) We build detailed dynamic models that capture the inter-
play between video rate adaption, video buffer evolution,
playback latency, and video freeze/skip.

2) Based on the dynamic models, we design MPC type of
live streaming algorithms to find the optimal solution of
video rate selection with future bandwidth estimation in
finite horizon.

3) We conduct extensive performance evaluation of the
proposed models and streaming algorithms through live
streaming simulations driven by real network traces. We
demonstrate that our live streaming algorithms can im-
prove the performance dramatically within latency range
of two to five seconds.

II. OPTIMAL AND PRACTICAL LIVE STREAMING

A. Discrete Time Model for Live Streaming

In live video streaming, video segments are encoded and
streamed in realtime. Due to network dynamics, a requested
video segment may not be delivered before its target playback
deadline. Video may freeze, and video playback latency will
be increased after each freeze. We develop a discrete-time
dynamic model to study the interplay between video rate,
playback latency, and video freeze/skip. Table I summarizes
the key variables in our model.

TABLE I: Key Variables of Discrete Live Streaming Model

Notation Meaning
ri Video rate of segment i
∆ Duration of video segment (1s)
Qi Video quality of segment i
wi Average throughput while downloading segment i
rtti Round trip time (RTT) while downloading segment i
ti Time when downloading of segment i completes
zi Idle time before downloading segment i
bi Buffer length after downloading segment i
li Playback latency for segment i
xi Video freeze time while downloading segment i
ni Number of segments skipped due to re-sync at i

We assume the client sequentially download video segments
generated in realtime. After segment (i − 1) is completely
downloaded at ti−1, the client requests segment i from the978-1-7281-2700-2/19/$31.00 2019 © IEEE

server if it has been encoded. The download completion time
for i is updated as:

ti = ti−1 + zi + rtti +
ri∆

wi
, (1)

where zi = (i∆− ti−1)+ is the potential download idle time
if segment (i − 1) download completes before segment i is
ready for download. The buffered video time is updated as:

bi =

(
bi−1 − zi − rtti −

ri∆

wi

)+

+ ∆, (2)

where zi +rtti + ri∆
wi

amount of video time is consumed from
the buffer while segment i is being requested/downloaded. If
video buffer goes down to zero before segment i is completely
received, video freeze will happen and the freeze time is:

xi =

(
zi + rtti +

ri∆

wi
− bi−1

)+

. (3)

Now we model how segment playback latency evolves over
time. The downloaded segments will be sequentially played
as long as there is no video freeze. Therefore, we have

li = li−1 + xi. (4)

The playback latency for the very first segment is a critical
parameter that impacts the risk of video freezes, latencies and
feasible video rate region of all the following segments.

Assuming a user joins the live streaming service at time
to, which falls into the encoding time period of segment o,
to ∈ [Eo, Eo + ∆), where Eo is the time when the first frame
of segment o is being encoded. The user can only request
previous segments that have already been encoded. Suppose
the user requests segment i0 = o − α as the initial segment,
and completes the download at time

ti0 = to + rtti0 +
ri0∆

wi0

.

If the user plays the initial chunk immediately after it is
downloaded, the video buffer might be too shallow to maintain
continuous streaming in future. Instead, most live streaming
algorithms start the initial playback only after accumulating β
segments in video buffer. The playback starts at time:

ti1 = to +

i1∑
i=i0

(zi + rtti +
ri∆

wi
),

where i1 = i0 + β− 1 is the segment triggering the playback.
Therefore the startup delay is ti1− to, namely the lag between
the user joins the live event and the video playback starts,
which equals to the downloading time of the first β segments1.
Since the video in the first segment i0 was recorded/encoded
starting from time Ei0 = Eo − α ∗∆. The playback latency
for the first segment is

li0 = ti1 − Ei0 =

i1∑
i=i0

(zi + rtti +
ri∆

wi
) + α∆ + (to − Eo),

1For the rest of the paper, we set β to 2.

where the first part is the startup delay, the second part is due to
requesting a previously encoded segment, the last part is due to
the random arrival of client request within a segment encoding
period, which we assume follows uniform distribution between
[0,∆]. With this initial playback latency, we can update the
playback latency for all the subsequent segments according
to (4). Without adapting the playback pace, the playback
latency li is non-decreasing over time, and each video freeze
will increase the playback latencies for all the subsequent
segments. To closely track the live event, we set up a re-
sync mechanism: whenever there is a video freeze, say at ti
when segment i download completes, if li > lmax, the longest
tolerable playback latency, we force the streaming session to
restart following the (α, β) strategy for the initial playback.
The number of segments skipped due to re-sync is:

ni = (o(i) − α− i)+, (5)

where o(i) is the index of the segment being encoded at re-
sync time instant of ti.

B. Streaming with Bandwidth Oracle in Finite Horizon

Equations (2),(3),(4),(5) define a discrete-time dynamic sys-
tem for live streaming, with system state before downloading
segment i as Si = 〈bi−1, xi−1, li−1, ni−1, ri−1〉. Given the
initial playback strategy of (α, β), the system evolution is
determined by the video rate selection ri for segment i and
network condition. The system dynamics are summarized as:

Si+1 = f(Si, ri, {wi, rtti}). (6)

Given the dynamic live streaming model, one approach is to
estimate the future bandwidth and RTT in some finite horizon
[t, t+m], calculate the optimal streaming strategy for time t,
then repeat this for the next time slot, following the Model
Predictive Control (MPC) framework [6].

The user experience of streaming segment i can be modeled
as a weighted QoE function:

QoE(Si, ri) =a1Q(ri)− a2xi − a3|Q(ri)−Q(ri−1)|
− a4g(li)− a5ni,

(7)

where Q(ri) = log ri
R0

is the perceptual video quality with R0

representing the lowest rate in R. And g(·) is the playback
latency penalty. In this paper, we adopt a logistic growth func-
tion 1

1+eφ−li
− 1

1+eφ
to flexibly set the latency sensitive range

by adjusting φ. a1, a2, a3, a4 and a5 are weights reflecting a
user’s relative sensitivity to different QoE components.

If we treat {wi, rtti} as exogenous inputs outside of client’s
control, the optimal streaming strategy for a client is to select
video rate ri for each segment to maximize the aggregate QoE:

OPT-CTRL: max
{ri}

m∑
i=1

QoE(Si, ri)

subject to Si+1 = f(Si, ri, {wi, rtti}).
(8)

With the oracle of network condition {wi, rtti}, the system
dynamics are deterministic, and the optimal control strategy
{r∗i } can be obtained using dynamic programming for any

finite time horizon i ∈ [1,m], as illustrated in Algorithm 1.
From any state at stage i, there are in principle |R| possible
actions, so the maximum number of possible states at stage
m is |R|m. The state explosion is problematic for large m.
Fortunately, based on the accumulated QoE metric up to stage
i, we can already eliminate some states that have no chance to
be part of the final optimal solution, and therefore terminate
further expansion from those states.2 After we obtain all the
candidate states at all stages, we can find the optimal transition
between those stages using dynamic programming with the
following Bellman equation:

V (i)(Si) = max
ri∈R

{
QoE(Si, ri) + V (i+1)(f(Si, ri, {wi, rtti}))

}
where V (i)(Si) is the optimal solution of the tail problem
max

∑m
k=iQoE(Sk, rk), i.e., the cumulative QoE from stage

i to stage m if one starts with Si and takes the optimal control
at each stage from i to m.

Algorithm 1 Optimal Streaming for Horizon-m

Input: S1: the initial state; m: look-ahead horizon; {wi, rtti, i ∈
[1,m]}: future available bandwidth and rtt; R: available rates;
Output: {r∗i , i ∈ [1,m]}: optimal rate sequence.
Initialization: The possible states at stage 1: Ω1 = {S1}.

1: Branch-and-Bound State Expansion
2: for each segment i ∈ [1,m] do
3: Ωi = ∅
4: for each state S in Ωi−1 do
5: for each Rj ∈ R do
6: S ′i = f(S, Rj , {wi, rtti})
7: if S ′i could be part of the overall optimal solution then
8: Ωi ← Ωi

⋃
S ′i

9: end if
10: end for
11: end for
12: end for
13: Find Optimal Transition S1

r∗1−→ S∗2 ∈ Ω2 · · ·
r∗m+1−−−→ S∗m+1 ∈

Ωm+1 to maximize accumulated QoE
∑m
i=1QoE(Si, ri)

through DP.
14: return r∗[1,··· ,m]

While Algorithm 1 calculates the m-step optimal streaming
strategy using network condition oracle for the future m
steps, due to fast state expansion, its complexity increases
quickly with m. In practice, we want to limit m to small
numbers. To develop complete streaming solution for arbitrary
number of stages, we employ a sliding horizon framework
described in Algorithm 2. To initialize the playback, the first
β segments will be downloaded according to some pre-defined
rate selection strategy. For each of the following segment i,
Algorithm 1 is called to obtain the optimal solution for the next
m segments by using network oracle for the next m steps (line
3), but only the solution for segment i is adopted to drive the
system to the next stage (line 4-5).

C. MPC-Live Streaming Algorithms

In practice, network condition oracles are not available
for any future horizon. Essentially, the deterministic optimal
control problems studied in Section II-B become stochastic

2Similar to the Branch-and-Bound approach for Integer Programming.

Algorithm 2 Sliding Horizon-m Streaming
Input: S1: initial state; α and β: startup parameters; m: look-
ahead horizon; N : live streaming duration; {wi, rtti, i ∈ [1, N]}:
available bandwidth and rtt; R: available rates.
Output: {ri, i ∈ [1, N]}: rate sequence for all segments

1: Download the first β segments using predefined rate selection
strategy r[1,··· ,β], obtain Sβ+1

2: for each segment i ∈ [β + 1, N] do
3: rr

(m)
i =Horizon-m(Si,m, {w[i,i+m−1], rtt[i,i+m−1]},R)

4: ri = rr
(m)
i [1]

5: Si+1 = f(Si, ri, {wi, rtti})
6: end for
7: return r[1,··· ,N]

optimal control problems, with exogenous random parameters
{wi, rtti}. One straightforward direction is to use the esti-
mated bandwidth and RTT in the near future to drive the finite
horizon optimal control problem in Section II-B. With a time
horizon of m, at stage k, the rate of segment i is selected as:

MPC-Live: rmpc
i = argmax

{ri,··· ,ri+m−1}

i+m−1∑
k=i

QoE(Sk, rk)

subject to Sk+1 = f(Sk, rk, {ŵk, r̂ttk}), k ∈ [i, i+m− 1],

where f(·) is again defined by equations (2),(3),(4),(5), and
ŵk and r̂ttk are the estimated future bandwidth and RTT. The
MPC solution can be obtained using the DP Algorithm 1, with
wi and rtti replaced by ŵi and r̂tti. Realtime network QoS
prediction is a challenging problem. One can employ differ-
ent approaches, e.g. [7], to achieve the desirable prediction
accuracy and complexity trade-off.

D. Chunk-based Live Streaming

Fig. 1: Latency of Chunk-based Streaming

In most existing DASH solutions, a server can only stream
a segment to a client after the entire segment is completely
encoded. This introduces a latency of ∆. To achieve low
latency, the recent proposal in CMAF [8] is to break a video
segment into multiple chunks, while the rate adaption is still
done at the segment level, each chunk can be packaged and
transmitted separately. As illustrated in Fig. 1, with the server-
wait mechanism [5], after receiving the MPD of segment
(i − 1), the client can send out request for segment i. The
server can push chunk ci,1 of segment i to the client whenever
it is encoded and packaged. In this case, the latency can be
reduced to ∆c + tc, where ∆c is chunk duration and tc is
chunk transmission time, which can be significantly lower
than the segment-based streaming latency of ∆ plus segment
transmission time. As will be shown in our evaluation, such
latency reduction is crucial in low-latency live streaming.
Due to space limit, we refer interested readers to our project
website [1] for more details.

0 100 200 300
Accumulate QoE

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

Naive
PI
MPC(s)

MPC(c)

(a) Overall QoE

0.3 2 4 6
Average Bitrate (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

Naive
PI
MPC(s)

MPC(c)

(b) Average Bitrate

0.0 1.0 2.0 3.0
Total Freeze (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

Naive
PI
MPC(s)

MPC(c)

(c) Average Freeze

2.5 3.0 3.5
Average Latency (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

Naive
PI
MPC(s)

MPC(c)

(d) Average Latency

0 200 400 600 800
Average Bitrate Change (Kbps)

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

Naive
PI
MPC(s)

MPC(c)

(e) Average Bitrate Change
Fig. 2: CDF of QoE Metrics over 120 4G Traces with α = 2

0 100 200 300
Accumulate QoE

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

Naive
PI
MPC(s)

MPC(c)

(a) Overall QoE

0.3 2 4 6
Average Bitrate (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

Naive
PI
MPC(s)

MPC(c)

(b) Average Bitrate

0.0 1.0 2.0 3.0 4.0
Total Freeze (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

Naive
PI
MPC(s)

MPC(c)

(c) Average Freeze

3.5 4.0 4.5 5.0
Average Latency (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

Naive
PI
MPC(s)

MPC(c)

(d) Average Latency

0 200 400 600 800
Average Bitrate Change (Kbps)

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

Naive
PI
MPC(s)

MPC(c)

(e) Average Bitrate Change
Fig. 3: CDF of QoE Metrics over 120 4G Traces with α = 3

III. PERFORMANCE EVALUATION

We conducted extensive trace-driven simulations to evaluate
various live streaming algorithms in the low-latency regime.
• Naive is a rate-based streaming algorithm. At each step,

the estimated bandwidth ŵ for downloading the next
video segment is set to the harmonic mean of download
bandwidth of the past five segments.3

• PI-controller is a buffer-based algorithm [9] that regu-
lates the aggressiveness γp of rate selection, based on
the difference between the actual buffer length and a
reference qref . The highest rate lower than the regulated
bandwidth γpŵ is chosen where ŵ is the predicted
bandwidth, and qref is set to be the initial latency. 4

• MPC-Live (MPC(s)) is the segment-based implemen-
tation of the MPC algorithm proposed in Section II-C.
In experiments, each segment is 1s, the horizon is five
segments. We use harmonic mean of past five bandwidth
{wk, k ∈ [i− 5, i− 1]} as the prediction for ŵi.

• MPC-Chunk (MPC(c)) is the chunk-based implementa-
tion of MPC-Live, with chunk size of 200 ms.

We developed a detailed live streaming simulator and
implemented all the above algorithms in Python. We used
a recent 4G cellular bandwidth dataset collected in NYC
Metro Area [7] with 120 individual testing traces to drive
the simulations. The CDF of QoE metrics over all the test
cases are shown as Fig. 2 and 3. Naive algorithm performs
conservatively with lowest average video rate which leads
to lowest QoE. Chunk-based streaming algorithms MPC(c)

achieves the highest QoE in most cases even with more video
rate fluctuation. The performance of PI-controller is in between
of Naive and MPC(c). Segment-based MPC(s) algorithm has
similar average video rate to its chunk-based MPC, but it
suffers higher penalty from video freeze and latency. This
further proves that chunk-based design is more suitable for
supporting low-latency live streaming.

3Video rate is chosen as γŵ, where γ = 80%.
4Video is streamed in chunk-mode for both Naive and PI-controller.

IV. CONCLUSION

In this paper, we explored the design space of low-latency
live video streaming by developing dynamic models and
optimal control strategies. Our models capture the interplay
between various important QoE metrics, including video
quality, playback latency, video freeze and skip. We further
developed live streaming algorithms under the framework
of MPC. Through extensive experiments, we demonstrated
that our proposed algorithms can improve the performance
dramatically in the latency range from two to five seconds.
We also demonstrated that chunk-based packaging/streaming
is a promising mechanism to achieve a high level of user QoE
in the tight low-latency design space. As future work, we will
study low-latency streaming of 360 degree video.

REFERENCES

[1] “Live demo,” https://github.com/ullstreaming2020/Live-Demo, 2019.
[2] V. Cisco, “Cisco visual networking index: Forecast and trends, 2017–

2022,” White Paper, 2018.
[3] AWS. (2019) Video latency in live streaming. [Online]. Available:

https://aws.amazon.com/media/tech/video-latency-in-live-streaming/
[4] MUX. (2019) The low latency live streaming landscape in 2019.

[Online]. Available: https://mux.com/blog/the-low-latency-live-streaming-
landscape-in-2019/

[5] V. Swaminathan and S. Wei, “Low latency live video streaming using
http chunked encoding,” in 2011 IEEE 13th International Workshop on
Multimedia Signal Processing. IEEE, 2011, pp. 1–6.

[6] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert, “Constrained
model predictive control: Stability and optimality,” Automatica, vol. 36,
no. 6, pp. 789–814, 2000.

[7] L. Mei, R. Hu, H. Cao, Y. Liu, Z. Han, F. Li, and J. Li, “Realtime
mobile bandwidth prediction using lstm neural network,” in International
Conference on Passive and Active Network Measurement. Springer, 2019,
pp. 34–47.

[8] (2013) Common media application format (cmaf) for segmented media.
[Online]. Available: https://www.iso.org/standard/71975.html

[9] G. Tian and Y. Liu, “Towards agile and smooth video adaptation in dy-
namic http streaming,” in Proceedings of the 8th international conference
on Emerging networking experiments and technologies. ACM, 2012, pp.
109–120.

