
Busoni: Policy Composition and Northbound
Interface for IPv6 Segment Routing Networks

Osamah L. Barakat∗, Pier Luigi Ventre†, Stefano Salsano†, Xiaoming Fu∗
∗University of Goettingen, Germany, †University of Rome Tor Vergata, Italy

Abstract—Segment Routing is a source routing based architec-
ture that provides an opportunity to include a list of instructions
called segments in the packet headers. The segments may allow
the inclusion of detours for responding to Traffic Engineering
needs or Service Function Chaining implementations. Even
though there is an increasing interest towards enhancing and
adopting Segment Routing, the administrators are still burdened
with the task of manually write and maintain the segment lists.
Such type of management presents several challenges ranging
from error-prone configurations to increased response time for
network updates. In this paper, we present a Segment Routing
management framework named Busoni, which automates and
simplifies the process of segments lists management. Additionally,
we also provide programming tools to compose and manage
Segment Routing policies that operate efficiently, even under
multi-tenancy environments. Using different use cases, we show
the programming capabilities offered by our framework.

Index Terms—Network Function Virtualization, Northbound
Interface, Policy, Segment Routing, SFC, SRv6, Software Defined
Networking, VNF

I. INTRODUCTION

Segment Routing (SR) [1] was proposed the first time
in the late 2014 mainly with the goal of overcoming some
scalability issues and limitations that had been identified in the
traffic engineered Multi Protocol Label Switching (MPLS-TE)
solutions used for IP backbones. SR is a variation of source
routing where instructions, commonly known as segments,
are attached to packet headers to implement detours to the
default shortest path. The survey in [2] provides a thorough
description of SR technology. SR could be implemented on top
of either MPLS or IPv6 (i.e., SR-MPLS and SRv6) dataplane,
where segments identifiers (SIDs) are respectively encoded as
MPLS labels and IPv6 addresses.

The SRv6 implementation has drawn a lot of attention to
researchers from academia and industry, as witnessed recently
by the publication of several research activities [3], [4] and [5]
(a comprehensive survey related to Segment Routing can be
found at [2]). For these reasons, we are focusing our attention
on the SRv6 dataplane. Moreover, the IETF draft [6] intro-
duced the concept of encoding network commands (i.e., SRv6
behavior) as IPv6 addresses in the segments list. This means
when a network node receives a packet encapsulated with the
SR header, and the destination address matches an associated
behavior provided by this node, it will execute this defined
action. Therefore, whenever a network administrator wants

to implement a network program (e.g., traffic engineering),
she/he needs to inject a segments list that represents her/his
program in the packet’s header.

Even with all of these programming capabilities enabled
by SRv6, network administrators still face the difficulty of
manually constructing segments lists that fulfill their intents
and policies. To the best of our knowledge, there is only
one proposal that partially automates segments list manage-
ment [5], where authors proposed to utilize the DNS service in
the enterprise network to transfer segments lists between end
users and the controller. However, the proposal does not react
to networks updates and overrides the forwarding leveraging
DNS service instead of using the service IP address, which
would make it not applicable in several real contexts.

In other related SRv6 works [4], [7]–[10], segments lists
were composed manually as topologies used in the evalua-
tion tended to be small. However, in real operated network
topologies, manual composition presents various challenges
in the context of composing network policies. One of the
many challenges is the errors prone manual segments list
composition. It becomes even more challenging when the
identifiers are changed due to a migration of some network
functions or any other network dynamic events, and the need
to respond to such updates is time sensitive. Another challenge
with manual management is finding a correct parameter to pass
in the SRv6 command. Moreover, possible conflicts between
SRv6 behaviors could exist due to behavior misuse such as
applying decapsulation followed by encapsulation. All of these
challenges motivate the need for an automated framework
that efficiently manages SR policies. Existing solutions [11],
[12] that address these challenges in SDN work only with
OpenFlow based networks.

In this paper, we present Busoni, a framework to compose
and manage network policies on top of SRv6 networks. Busoni
provides the needed programming functionalities for network
administrators as a northbound interface on top of an SR
controller. The contributions of this work are:

• Automate segments list management: Busoni exploits
the benefits of the network controllers and utilizes a
data store to keep track of the SIDs announced in the
network. This feature allows the administrators to focus
on network management goals rather than focusing on
physical details of segments and their location.

• SR policy management: Network administrators can
choose to utilize the predefined policies provided by
Busoni or build a new policy on top of it. Busoni978-1-7281-2700-2/19/$31.00 2019 c© IEEE

offers different tools to compose SR policies ranging
from packet matching rules to functions that attach SRv6
behaviors to segments lists.

• Responding to network dynamics: Busoni updates any
affected policy whenever there is a network failure or up-
dates in the network topology. This feature complements
SR built-in reaction functions and keeps the installed
policies resilience to dynamic events.

• Multi-tenancy support: Carrier grade networks or cloud
service providers deliver overlay services to end-users.
Busoni supports multi-tenancy as it embeds tenants IDs
in any related SRv6 commands.

The rest of the paper is organized as follows: Section II
presents the architecture of the framework. Then, we describe
use cases in Section III and draw conclusions in Section IV.

II. NORTHBOUND INTERFACE FOR SRV6

Busoni is a northbound interface for SRv6 networks. A typ-
ical network environment, where Busoni operates, is similar to
the SDN [13] reference architecture, which includes network
controllers, interfaces to communicate with end-users (i.e.,
northbound) and data plane (i.e., southbound). It is crucial to
expose network topology information to Busoni to run network
management-related tasks (e.g., finding paths).

The networks controller should be able to collect the topo-
logical information from the SRv6 data plane using available
southbound interfaces (e.g., OSPFv3 or BGP-LS). The con-
troller also has to push the commands or segments lists to
the edge routers leveraging the available protocols [4] (e.g.,
gRPC or SSH). Using a specific protocol (e.g., OSPFv3)
to run one of the corresponding tasks does not affect how
Busoni processes and installs policies. Busoni interacts with
the network controller without knowing how the controller
learns the network topology. As shown in the Figure 1,
there are three main subsystems in Busoni, SRtypes, Path
Computation, and Database Middleware. They interact with
each other to provide the full-fledged functionality of Busoni.

The first component is SRtypes, which is the entry point
to the framework. It contains the main policy class which
users would use to build their policies. It also includes the
basic types needed by Busoni to hold policy’s components
(e.g., SRv6 Behaviors) including the class Match, which is
used to define matching criteria for incoming packets. SRtypes
interacts with the other two subsystems to perform its func-
tions. It uses Path Computation to calculate a possible shortest
path according to policy’s conditions and communicates with
Database Middleware when it needs to save or retrieve any
policy information to/from the datastore.

Path computation first checks what type of path is requested
(e.g., SFC) and calls the appropriate functions accordingly.
Whenever it needs to save the computed path to the datastore,
it communicates with Database Middleware. Busoni allows
four different variations of path finding queries: simple path,
QoS only, SFC only, and path with both QoS and SFC
requirements. In the simple path case, Busoni would find the
shortest path between all ingress and egress points, and it

Basic
Policy

Overlay
Policy

SRtypes

Path
Computation

Database
Middleware

SR Network Controller

Busoni

Figure 1: Major software subsystems of Busoni

could give the same path as the IGP routing protocol. The
second path finding query would evaluate all possible paths
which fulfill the QoS requirements and retrieve the path with
a minimum cost. However, in the third case where there are
some network functions to be included in the path, finding the
shortest path would be an NP-Hard problem [14]. Therefore,
Busoni uses an heuristic algorithm proposed in [15], the
ASR algorithm, where the final path is composed of shortest
paths between waypoints (e.g., routers hosting virtual network
functions). In the latter path query type, where QoS and SFC
should be considered while finding the path between ingress
and egress points, Busoni combines both queries described in
the second and third cases.

Finally, the Database Middleware holds all functions and
event handling methods that need to interact with the datastore
directly. It operates as an interface to ease database interaction
with other components. It also listens to any dynamic event
and responds by calling the corresponding handler, and when-
ever it needs to update a policy, it communicates with SRtypes
to launch finding path function for the update procedure.

A. API for policies composition

Busoni provides a standard policy class SRpolicy which
contains the necessary functions needed to compile submitted
policies. End-users inherit this class and mainly extend the
eval function which is called automatically when users
instantiate an object from their defined class. Before executing
the eval function, Busoni needs to first find a corresponding
path that represents the requested policy (e.g., adhere to QoS
or go through network functions). Then, it will have to encode
the path using available SIDs.

In Listing 1, we see that PolicySR abstraction takes many
arguments that help in defining customized policies. The first
argument match defines the matching criteria for incoming
packets classification. For example, both source and destina-
tion could be determined using a range of IP addresses. Match
class is flexible and provides through defined keywords (e.g.,
dstIP, dstport) a powerful tool to define custom matching rules
like exclude a specific IP address. Users would use native
python libraries to define their criteria without a need to learn
any specific syntax. The second argument holds the quality
of service (QoS) specifications defined by the user’s policy. It

Listing 1: The construction function of class PolicySR
PolicySR(match, qos=None, nfList=None, isOrdered=True,

matchOnSrc = False, id=0)

could relate to any QoS metrics (e.g., bandwidth or latency),
where the user has the flexibility to define what is needed in
the policy. In the implementation of Busoni, we used a score
metric where high score value reflects low latency and vice
versa. Any other metrics or a combination of them would be
used with some query updates to maintain which condition is
preferred, low or high value. It is also an optional argument,
and thereby it is not mandatory that policy provides some QoS
specifications.

After that, there are some arguments related to service func-
tion chaining and whether they should be visited in order or
not. An NFV management framework should provide before-
hand which network functions are running in the network and
feed the network controller with functions related information
such as functions name and SIDs. Data-plane routers on their
side, using the IGP protocol, broadcast network functions they
host (virtualized or stand-alone). The last arguments determine
if routers should match incoming packets against the source IP
address or not, tenant ID if any (VPN user) for special routing
table matching when packets exit the network domain, and a
policy id which is used internally for dynamic updates.

Users, after passing the above inputs, need to declare any
special handling needed for their packets. To understand what
"special" means in this context, we elaborate in Section II-B
how the basic class compiles the policy requirements to
generate related segment commands, including the special
handling requests.

B. Busoni in action

To generate a correct list of segments that represents what
an user wants from the network, Busoni has to perform
some functions. These functions begin with finding a path
then encode it as segments list (i.e., SIDs) and conclude
with performing special routines defined by the user (e.g.,
adding some SRv6 behaviors). Busoni starts working just
when the basic class PolicySR is inherited, and its con-
structor function is called. It first sends a request to the
Path Computation subsystem. If there are no routes satisfying
the policy’s requirements, Busoni would inform the user. In
this case, the user has the freedom either to adjust policy’s
requirements or propose changes to the network topology.
Busoni cannot accept all submitted policies as it considers
available resources.

The second step after finding the path is to encode it using
segments. In this step, Busoni calculates the minimum number
of segments needed to represent the whole path. Even though
most of proposals [16]–[19] address the problem for MPLS-
SR, minseg algorithm [19] considers adjacency segment [1]
and SRv6, thereby fits with our framework. The main idea
of the algorithm is to check if the shortest path between two
nodes belonging to the current path, will traverse any middle
points in the same path. The minseg algorithm was modified

to fit in our network model by ignoring network functions’
relationships and use only routers’ to calculate the correct
shortest path between routers.

After that, when the segment list is available, Busoni calls
the eval function which contains any custom actions that
should be executed before sending the segment list to ingress
routers. For example, end users could choose a behavior,
from available SRv6 behaviors, which are supported by data
plane routers, to be added and concatenated to the segments
list. A practical example we can mention here is the multi-
tenancy management where users would attach T.Encaps
and END.DT6 at the beginning and at end of the segments list
respectively to get VPN service. Such addition to the segments
list would trigger a flag to let Database Middleware subsystem
to generate proper southbound interface commands and ensure
that policy is executed correctly in the data plane.

In the last step, Busoni will store the policy information
in the database. This information contains matching criteria
composed by the user, the calculated path, the optimized
segment list, any path requirements specified by the user
(either QoS or SFC related), and the policy ID. Maintaining
this information is essential to allow any future updates that
could be triggered as a response from network dynamics.

C. Datastore

To keep data integrity, track installed policies, and re-
spond to network events, Busoni uses as data store a graph
database [20] to model and save network environment data
[21]. This option allows Busoni to recover from an outage and
reload the database and synchronize any network updates. In
this database model, nodes represent main network compo-
nents either physical (e.g., routers) or virtual (e.g., policies),
and edges represent the connection between the nodes.

Whenever a path is calculated between two points, it is
stored to be used later as one of the policy information.
Moreover, when Busoni saves a policy in the database, it
makes sure that all network functions and routers that are part
of the policy path are connected to the policy node. Thereby, if
any event regarding these components is raised, Busoni would
find it easy to update the policy according to the raised event.

III. USE CASES

In this section, we show the functionality of our framework,
Busoni, using three realistic use cases: SFC, QoS and VNF
migration. All scenarios are based on a simple network topol-
ogy depicted in Figure 2. In the topology, there are two types
of network functions firewall (FW) and deep packet inspection
(DPI), each one hosted on a separate router. There are also two
network sites: site A and site B. We assign bandwidth values
for the links in mb/s, which will be used later to demonstrate
a QoS based policy.

A. Basic policy with SFC

Basic Policy is any policy that does not have any multi-
tenancy requirements and where a network admin would like
to steer the traffic between site A and B through two network

100
100

100
200

100

200

B

A

D

F

C E

G
200

H

I

100

200 200

200

100

Site A

Site B

200 100

SRv6 Domian

200

200

FW

DPI

Figure 2: SRv6 enabled domain

functions (e.g., firewall and deep packet inspection). The
starting point in Busoni is to define a class holding the policy
description. After the class definition, the network admin
should start by defining the match object to specify the source
and destination addresses and then she/he would instantiate
an object from the class and pass the network function names
(FW, DPI). Busoni will choose the hosting router that makes
the total route better according to what we discussed earlier
about path computation in Section II. There is no need to
call or define further functions as the path gets calculated and
installed automatically after instantiating an object from the
policy class. Considering the scenario in Figure 2, the segment
list will be FWE,DPIG,Site B.

B. Overlay with QoS policy

Let us now consider a network admin that would like to
implement a quality of service policy where packets between
the two sites must use only links with a minimum bandwidth
of 200 Mb/s. In this use case, we assume also that the
traffic belongs to one tenant. Therefore, the SRv6 behaviors
T.encaps and End.DT6 are needed at ingress and egress
nodes, respectively. Setting up the decapsulation and the tenant
routing table at the egress points should be done during the
VPN installation phase. Following the same steps we described
earlier, the network admin would first define the policy class
(Overlay Policy) Then, the network admin will use the eval
function to define T.encaps and End.DT6. The former will
be inserted in the top of the segments list and the latter, with
the tenant ID as a parameter, will be attached at the end of
this list. The path in this case according to the input topology
would be A,B,I,F,Site B and therefore the segments are
T.encaps,I,End.DT6(102)F.
A,B,D,FWD,F,DPIF,Site B and hence the segments list
that represents the updated path is FWD,DPIF, Site B.
C. Responding to a VNF migration

Let’s consider the use case described in Section III-A as
starting point, the network function FW hosted in router E
is migrated to router D. The controller is notified of this
event and hence will trigger Busoni to respond. First, Busoni
will have to find affected policies and retrieve their match
conditions and their information. At this point, Busoni will
discover that there is an already installed policy using the
function that was moved from router E. Then, it deletes
the policy from the database and starts the update proce-
dure immediately by calculating a new path that satisfies
SFC and the classification conditions. The path would be

IV. CONCLUSION

In this paper, we presented a policy composer and man-
agement framework for SRv6 networks. We have showcased
the capabilities of the framework and the tools provided using
three realistic use cases: SFC, QoS and VNF migration.

REFERENCES

[1] Filsfils et al., “The Segment Routing Architecture,” in 2015 IEEE Global
Communications Conference (GLOBECOM), Dec. 2015, pp. 1–6.

[2] Ventre et al., “Segment routing: A comprehensive survey of research
activities, standardization efforts and implementation results,” arXiv
preprint arXiv:1904.03471, 2019.

[3] Abdelsalam et al., “Performance of IPv6 Segment Routing in Linux
Kernel,” in 1st Workshop on Segment Routing and Service Function
Chaining (SR+SFC 2018) at CNSM 2018, Rome, Italy, 2018.

[4] Ventre et al., “SDN Architecture and Southbound APIs for IPv6 Segment
Routing Enabled Wide Area Networks,” IEEE Trans. Netw. Service
Manag., vol. 15, no. 4, pp. 1378–1392, Dec. 2018.

[5] Lebrun et al., “Software Resolved Networks: Rethinking Enterprise Net-
works with IPv6 Segment Routing,” in Proceedings of the Symposium
on SDN Research, ser. SOSR ’18. ACM, 2018, pp. 6:1–6:14.

[6] Filsfils et al., “SRv6 Network Programming,” IETF Secretariat, Internet-
Draft draft-filsfils-spring-srv6-network-programming-06, Oct. 2018.

[7] Abdelsalam et al., “Implementation of virtual network function chaining
through segment routing in a linux-based NFV infrastructure,” in 2017
IEEE Conference on Network Softwarization, NetSoft, 2017, pp. 1–5.

[8] Desmouceaux et al., “6lb: Scalable and Application-Aware Load Bal-
ancing with Segment Routing,” IEEE/ACM Trans. Netw., vol. 26, no. 2,
pp. 819–834, Apr. 2018.

[9] Aubry et al., “Robustly Disjoint Paths with Segment Routing,” in Pro-
ceedings of the 14th International Conference on Emerging Networking
EXperiments and Technologies, ser. CoNEXT ’18, 2018, pp. 204–216.

[10] Xhonneux et al., “Leveraging eBPF for Programmable Network Func-
tions with IPv6 Segment Routing,” in Proceedings of the 14th Interna-
tional Conference on Emerging Networking EXperiments and Technolo-
gies, ser. CoNEXT ’18, 2018, pp. 67–72.

[11] Reich et al., “Modular SDN Programming with Pyretic,” USENIX,
vol. 38, pp. 40–47, 2013.

[12] Foster et al., “Frenetic: A network programming language,” Proceedings
of the 16th ACM SIGPLAN international conference on Functional
programming, pp. 279–291, 2011.

[13] Kreutz et al., “Software-Defined Networking: A Comprehensive Sur-
vey,” Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.

[14] Deo et al., “Shortest-path algorithms: Taxonomy and annotation,” Net-
works, vol. 14, no. 2, pp. 275–323, Jun. 1984.

[15] Dwaraki et al., “Adaptive Service-Chain Routing for Virtual Network
Functions in Software-Defined Networks,” in Proceedings of the 2016
Workshop on Hot Topics in Middleboxes and Network Function Virtu-
alization, ser. HotMIddlebox ’16, 2016, pp. 32–37.

[16] Lazzeri et al., “Efficient label encoding in segment-routing enabled
optical networks,” in 2015 International Conference on Optical Network
Design and Modeling (ONDM), May 2015, pp. 34–38.

[17] Davoli et al., “Traffic Engineering with Segment Routing: SDN-Based
Architectural Design and Open Source Implementation,” in 2015 Fourth
European Workshop on Software Defined Networks, Sep. 2015, pp. 111–
112.

[18] Cianfrani et al., “Translating Traffic Engineering outcome into Segment
Routing paths: The Encoding problem,” in 2016 IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS), Apr.
2016, pp. 245–250.

[19] Aubry et al., “SCMon: Leveraging segment routing to improve network
monitoring,” in IEEE INFOCOM 2016 - The 35th Annual IEEE Inter-
national Conference on Computer Communications, Apr. 2016, pp. 1–9.

[20] Angles et al., “Survey of Graph Database Models,” ACM Computer
Survey, vol. 40, no. 1, pp. 1–39, Feb. 2008.

[21] Barakat et al., “Gavel: A fast and easy-to-use plain data representation
for software-defined networks,” IEEE Transactions on Network and
Service Management, pp. 1–12, 2019.

