
RobustPay: Robust Payment Routing Protocol in
Blockchain-based Payment Channel Networks

Yuhui Zhang Dejun Yang

Abstract—The past decade has witnessed an explosive growth
in cryptocurrencies, but the blockchain-based cryptocurrencies
have also raised many concerns, among which a crucial one
is the scalability issue. Suffering from the large overhead of
global consensus and security assurance, even the leading cryp-
tocurrencies can only handle up to tens of transactions per
second, which largely limits their applications in real-world
scenarios. Among many proposals to improve the cryptocurrency
scalability, one of the most promising and mature solutions
is the payment channel network (PCN), which offers the off-
chain settlement of transactions with minimal involvement of
expensive blockchain operations. However, transaction failures
may occur due to external attacks or unexpected conditions, e.g.,
an uncooperative user becoming unresponsive. In this paper, we
present a distributed robust payment routing protocol RobustPay
to resist transaction failures, which achieves robustness, efficiency
and distributedness. Moreover, we modify the original HTLC
protocol and adapt it to the robust payment routing protocol.

Index Terms—Cryptocurrency, payment channel network,
routing, blockchain

I. INTRODUCTION

Over the past decade, the blockchain-based cryptocurrencies
have risen to more than $80 billion in peak capital, including
Bitcoin [7], Ethereum [12], and Ripple [14]. Nevertheless,
there are concerns that blockchain-based crytocurrencies can
be widely applicable when scaling up. A crucial concern is
that, when adding a block to the blockchain to verify the
transactions, the network capability to process transactions
is limited by a certain maximum rate, due to the necessary
proof-of-work calculations that needs to be carried out by
generating a number whose hash value that starts with a pre-
decided number of zeros. Take the Bitcoin blockchain as an
example, the maximum number of transactions per second
(tps) is only 7 [2], which is not comparable to over 47, 000
peak tps processed by Visa [18].

The payment channel network (PCN) was proposed to
tackle the scalability issues [10]. PCNs have been employed
to develop Bitcoin’s Lightning Network [10] and Ethereum’s
Raiden Network [8]. Section II provides an in-depth discussion
of the PCN working mechanism. A simple illustration of PCN
is shown in Fig. 1. PCNs can process instant and less valuable
payments without involving blockchain transactions which are
slow and expensive. Only the initial and final balances of each

Zhang and Yang are affiliated with Colorado School of Mines, Golden,
CO 80401. Email:{yuhzhang, djyang}@mines.edu This research was
supported in part by NSF grants 1525920, 1704092, 1717197, and 1717315.
The information reported here does not reflect the position or the policy of
the federal government.

Public
Blockchain

Payment Channel
Network

Fig. 1. Payment channel network (PCN) with a payment transaction from
A to D. The transactions are off-chain. When two parties disagree with the
transaction history, the transaction history will be published to the blockchain
for verification. The dishonest party will be punished with a penalty.

channel are required to be registered. It allows a payment
sent to the recipient through multiple hops between payment
channels. In the payment transferring process, hosts of the
channels on the route can charge fees accordingly. Therefore,
the key motivation is to optimize the routing in PCNs, and
guarantee the success of a payment.

Several reported research works have investigated payment
routing in PCNs [6, 11, 15, 16, 20]. However, these efforts
either emphasize on privacy [6, 16], or underestimate the
importance of key realistic constraints such as the transaction
fees [6, 11, 15, 16, 20]. Recently, Zhang et al. [21] designed an
optimal algorithm CheaPay, which generates a payment path
that minimizes the transaction fee in PCNs and satisfies both
the feasibility and timeliness constraints. However, CheaPay
only constructs a single path for a payment request, and
therefore cannot resist transaction failures due to unexpected
conditions or external attacks along the path. Therefore, PCNs
are expected to provide better robustness against transaction
failures, i.e., a payment routing protocol satisfies robustness,
if it constructs two or more node-disjoint payment paths,
where each payment path can fulfill the payment request. A
payment is transferred on these payment paths simultaneously.
If one path fulfills the payment first, the other path(s) will be
invalidated.

In this paper, we investigate the robust payment routing by
constructing two node-disjoint payment paths for a payment
request in PCNs. A robust payment routing has a number
of distinct characteristics, thus it is expected to satisfy a
set of desired properties. First, a robust payment routing
protocol should satisfy efficiency, i.e., to minimize the routing978-1-7281-2700-2/19/$31.00 2019 © IEEE

A

B C

D H is a hash of R

 (H, 2, 7.01)

 R

Fig. 2. Hashed time-lock contract (HTLC). The sender A sends a payment of
7 to the recipient D via B and C with an HTLC tolerance of 3. Assume that
the transaction fee charged by each user is 0.01. Circled numbers represent
the sequence of the operations.

and payment latency incurred by transmitting a payment
through multiple payment paths simultaneously. Secondly, a
robust payment routing should satisfy distributedness, as no
central administrative operator exists in PCNs. we propose
RobustPay, a robust payment routing protocol. The main
contributions of this paper are:

• To the best of our knowledge, we are the first to consider
the robust payment routing protocol, which provides
resistance to transaction failures in PCNs.

• We investigate important design goals of payment routing
in PCN, which are referred to as robustness, efficiency
and distributedness.

• We propose RobustPay, a distributed Robust Payment
routing protocol against transaction failures and enhance
the robustness for payment routing in PCNs by construct-
ing two node-disjoint paths for a payment request. We
also modify the original HTLC protocol and adapt it to
the robust payment routing to guarantee efficiency.

The remainder of the paper is organized as follows. In
Section II, we present the background and system overview of
PCNs and outline the design goals. In Section III, we illustrate
the robust payment routing protocol RobustPay, demonstrate
the design of the routing algorithm and analyze the properties.
We summarize this paper in Section IV.

II. BACKGROUND AND SYSTEM OVERVIEW

In this section, we provide the necessary background on
permissionless blockchains such as Bitcoin and Ethereum, and
present an overview of our payment channel network system.

A. Decentralized Ledger

Cryptocurrencies like Bitcoin [7], Ethereum [12], and Rip-
ple [14] are based on the blockchain technology, which is an
append-only decentralized ledger of transactions shared among
mutually distrusted entities. However, the consensus algorithm,
e.g. proof-of-work in Bitcoin, that guarantees the unique global
state, requires large local storage due to the high levels of data
replication and high computational power for adding a block
containing transactions to the blockchain.

B. Payment Channel

The use of payment channels is one way to realize the
off-chain approach. Two users establish a payment channel
by each depositing a certain amount into a joint account and
adding this transaction to the blockchain.

Now a transaction between them is essentially a chan-
nel balance update agreed upon by them. A channel is
protected by multi-signature smart contracts, which ensure
validity, nonequivocality and non-repudiation of the on-going
transactions. When one party publishes an obsolete balance
history to reverse settled transactions or to double-spend, the
contract guarantees that the dishonest party is punished by
granting all its remaining channel balance to the other party.
This economically prevents an adversary from utility gain via
dishonest behaviors. When the channel closes because either
it is not needed anymore or the deposit is depleted, a closing
transaction will be broadcast to the blockchain and will send
deposited amount to each user according to the most recent
balance.

C. Payment Channel Network

Unfortunately, payment channel alone cannot solve the
scalability issue. Requiring everyone to create a payment
channel with everyone else results in a large amount of on-
chain transactions broadcast to the blockchain. In order to
enable payments between any two users, payments can be
routed through multiple hops of channels in the payment chan-
nel network (PCN) formed by users connected by payment
channels. This, however, can lead to issues that a user denies
performing payment transfer after receiving a preceding one,
or the recipient denies receiving the payment.

D. Hashed Time-Lock Contract (HTLC).

To address these issues, the Hashed Time-Lock Contract
(HTLC) mechanism has been introduced [10], as shown in
Fig. 2. The recipient first generates a random value R and
sends its hash H to the sender. The sender, as well as any
intermediate user, includes H in the transaction contract, such
that the transferred payment can be claimed by the transferee
only when the secret R is provided to the transferor. In
addition, each transaction is restricted by an HTLC tolerance,
such that if the transferor does not receive R within the
HTLC tolerance, the transferred fund will be refunded to the
transferor after the HTLC expires. The unit of the HTLC
tolerance, denoted by δ, is the worse-case bound on time
for one on-chain transaction. Every user in the payment path
sets a tolerance, which is a smaller HTLC tolerance in the
outgoing payment channel than that in the incoming payment
channel. For example, in Lightning Network, the tolerance
is set as the number of hops until the recipient [10]. As
an example, the HTLC (H, 2, 7.01) from B to C in Fig. 2
means that C can receive a payment of 7.01 from B if C
can provide the preimage of H within 2δ. This mechanism
ensures that a user can pull the payment from its predecessor
after its payment has been pulled by its successor. Note that
the HTLC tolerance time is not the time of payment routing,
which is fast when users are cooperative and responsive.
In addition to the payment to the recipient, an HTLC also
includes the transaction fees charged by the intermediate nodes
for transferring the sender’s payment. The fees are significantly

lower than blockchain transaction fees largely due to the time-
value of locking up funds in the channel, as well as paying
for the chance of channel close on the blockchain.

E. Design Goals

In the blockchain and PCN systems specified above, we
derive a set of desirable design goals that a payment routing
protocol should satisfy, which are elaborated below.

• Robustness: A payment routing protocol satisfies robust-
ness, if it generates two or more node-disjoint payment
paths, where each of them can fulfill the payment request
individually. In PCNs, a node may become unresponsive
due to external attacks, unexpected conditions or unco-
operative behaviors, which leads to transaction failures.
If the routing protocol generates only a single path for
a payment request, it fails when a node on this path
becomes unresponsive.

• Efficiency: A payment routing protocol satisfies effi-
ciency, if it minimizes the routing and payment latency
incurred by transmitting a payment through more than
one path simultaneously. In the robust payment routing,
only one payment path will be used to fulfill the payment
request, and the other payment path(s) will be invalidated.
Thus, it is necessary to guarantee that this payment path
introduces the minimum latency.

• Distributedness: A payment routing protocol satisfies
distributedness, if it dose not rely on a centralized trusted
party. Centralized routing is subject to a single point of
failures upon external attacks, and hence cannot be trusted
by users. Instead, users need to communicate with each
other and conduct local computations to find routes for
payments.

III. A DISTRIBUTED ROBUST PAYMENT ROUTING
PROTOCOL IN PCNS

In this section, we present the design of RobustPay. We
first provide the high-level overview and intuition behind
RobustPay, and then follow the design goals that are outlined
in Section II-E to provide a detailed protocol description.

A. Design Rationale

A payment transaction failure occurs, if there are external
attacks or unexpected conditions along the payment path,
e.g., an uncooperative IU decides to become unresponsive
by not providing the preimage of H to its transferor within
the HTLC tolerance. Therefore, it is necessary to design a
payment routing protocol that satisfies robustness, efficiency
and distributedness. we propose a distributed robust payment
routing protocol RobustPay against transaction failures for
payment transmissions in PCNs.

B. Design Challenge

The challenge comes from the establishment of HTLCs,
since the HTLC mechanism was originally designed to guar-
antee the off-chain security almost the same as the original
blockchain, when routing on a single payment path. To apply

Example Commitment Transaction
with an HTLC output

Outputs:
0. RSMC Alice & Bob 0.4
1. Bob 0.5
2. “Naive/Insecure” HTLC 0.1

HTLC: Execution path 1
“Delivery”

Bob can redeem 0.1 if he
produces the preimage of
H within 3 days

HTLC: Execution path 2
“Cancel”

Alice can redeem 0.1 if
Bob sends cancellation
within 3 days

HTLC: Execution path 3
“Timeout”

Alice can redeem 0.1 in 3
days, if Bob did not
respond within 3 days

nLockTime 3 days

Output 2

Fig. 3. Modified hashed time-lock contract (HTLC). Alice sends a payment
of 0.1 to the Bob via B and C with an HTLC tolerance of 3. Note that
there are two possible spends from an HTLC output. If Bob can produce
the preimage of H within 3 days, Bob can redeem path 1. If Alice sends
cancellation before Bob can produce the preimage of H within 3 days, Alice
can redeem path 2. After three days, Alice is able to redeem path 3, if there
is no response from Bob.

A

B C

D
H is a hash of R

(H, 3, 7.01)

R

FE G
(H, 3, 7.02) (H, 2, 7.01)

Fig. 4. Payment Forwarding in RobustPay. The sender A sends a payment of
7 to the recipient D. Two node-disjoint payment paths have been constructed.
One payment path is A → B → C → D; another payment path is
A → E → F → G → D. HTLCs are established on both payment
paths simultaneously, from the sender A to the recipient D, sequentially. The
recipient D provides the preimage of H to C on the upper (green) payment
path and refunds G on the lower (red) payment path.

the HTLC mechanism in a robust payment routing protocol,
we need to modify the current HTLC protocol carefully to
satisfy efficiency as well as off-chain security.

C. Payment Path Construction

The first stage is to construct two payment paths for a
payment request, such that either payment path can fulfill the
payment request, and there is no intermediate user (IU) shared
on both payment paths. Such two payment paths are referred to
as a pair of node-disjoint payment paths. If a transaction failure
occurs on a payment path due to unexpected conditions, the
other payment path can still work to fulfill the transaction. In
this stage, RobustPay can be integrated with any distributed
algorithm that determines a pair of node-disjoint payment
paths.

D. HTLC Establishment

A Hashed Time-Locked Contract (HTLC) is a script that
permits a designated party (the transferee) to spend funds by

disclosing the preimage of a hash. It also permits a second
party (the transferor) to spend the funds after a timeout is
reached, in a refund situation. The original HTLC introduced
in [10] was designed for payment routing in a single payment
path. In the HTLC, the on hold payment is refunded to the
transferor, only if the transferee does not provide the preimage
of H within the HTLC tolerance. However, the HTLC does
not provide the transferee with flexible choices to cancel a
transaction before the expiration. Even if the transferee decides
to cancel a transaction, it can only wait until the expiration of
the HTLC.

To adapt the HTLC protocol to RobustPay, we modify the
original HTLC to provide more flexible choices as follows: If
the transferee does not provide the preimage of H within the
HTLC tolerance, or if the transferee cancels the transaction
before the preimage of H is provided, the on hold payment
in the HTLC is refunded to the transferor. The script of the
modified HTLC takes the following form, and the modification
of the HTLC is highlighted:

OP IF
[HASHOP] 〈digest〉 OP EQUALVERIFY OP DUP
OP HASH160 〈seller pubkey hash〉

OP NOTIF
[CANCELOP] 〈digest〉 OP DROP OP DUP
OP HASH160 〈seller pubkey hash〉

OP ELSE
〈num〉 [TIMEOUTOP] OP DROP OP DUP
OP HASH160 〈buyer pubkey hash〉

OP ENDIF
OP EQUALVERIFY
OP CHECKSIG

Such a modification on HTLC can provide flexible choices
for PCN users. A simple illustration of the modified HTLC is
shown in Fig. 3.

E. Payment Forwarding

After the payment path construction and the HTLC estab-
lishment processes, the sender can forward the payment to
the recipient via the constructed payment paths. Once one of
the two payment paths successfully transfers the payment to
the recipient, the other payment path should be invalidated.
A simple illustration of the payment forwarding is shown in
Fig. 4. Two node-disjoint payment paths have been constructed
in the previous stage, where A is the sender and D is the
recipient. An HTLC has been created on each IC on both
payment paths. Since D receives the HTLC from G on the
upper (green) payment path earlier, D provides the preimage
of H to C and receives the payment from C. Therefore, the
lower (red) payment path is invalidated. D can choose to
cancel the transaction from G to D. The on hold payment
in the HTLC between G and D is refunded to G. So are the
rest on hold payments in the HTLCs on the ICs along the
lower (red) payment path.

IV. CONCLUSION

In this paper, we investigated the robust payment routing
protocol to resist payment transaction failures in PCNs. We
first suggested a set of crucial design goals for payment
routing, which are referred to as robustness, efficiency and
distributedness. Following these design goals, we presented
a distributed robust payment routing protocol RobustPay
consisting of three stages: Payment Path Construction, HTLC
Establishment and Payment Forwarding. For Payment Path
Construction, RobustPay achieved robustness by constructing
two payment paths, where either payment path can fulfill the
payment request. Moreover, we modified the original HTLC
protocol to provide efficiency and adapted it to the robust
payment routing protocol.

REFERENCES

[1] R. Bellman, “On a routing problem,” in Quarterly of applied mathemat-
ics, vol. 16, no. 1, 1958, pp. 87–90.

[2] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba,
A. Miller, P. Saxena, E. Shi, E. G. Sirer et al., “On scaling decentralized
blockchains,” in FC. Springer, 2016, pp. 106–125.

[3] C. Decker and R. Wattenhofer, “A fast and scalable payment network
with bitcoin duplex micropayment channels,” in SSS. Springer, 2015,
pp. 3–18.

[4] L. R. Ford Jr, “Network flow theory,” RAND CORP SANTA MONICA
CA, Tech. Rep., 1956.

[5] C.-L. Li, S. T. McCormick, and D. Simchi-Levi, “The complexity of
finding two disjoint paths with min-max objective function,” Discrete
Applied Mathematics, vol. 26, no. 1, pp. 105–115, 1990.

[6] G. Malavolta, P. Moreno-Sanchez, A. Kate, and M. Maffei, “SilentWhis-
pers: Enforcing security and privacy in decentralized credit networks.”
in IACR Cryptology ePrint Archive, 2016, pp. 1054–1071.

[7] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system.” Work-
ing Paper, 2008.

[8] R. Network. [Online]. Available: https://raiden.network/
[9] C. H. Papadimitriou and D. Ratajczak, “On a conjecture related to

geometric routing,” in Theoretical Computer Science, vol. 344, no. 1.
Elsevier, 2005, pp. 3–14.

[10] J. Poon and T. Dryja, “The bitcoin lightning network: Scalable off-
chain instant payments,” 2016. [Online]. Available: lightning.network/
lightning-network-paper.pdf

[11] P. Prihodko, S. Zhigulin, M. Sahno, A. Ostrovskiy, and O. Osuntokun,
“Flare: An approach to routing in lightning network,” in Whitepaper,
2016.

[12] E. Project. [Online]. Available: https://www.ethereum.org/
[13] F. Reid and M. Harrigan, “An analysis of anonymity in the bitcoin

system,” in Security and privacy in social networks. Springer, 2013,
pp. 197–223.

[14] Ripple. [Online]. Available: https://www.ripple.com/
[15] E. Rohrer, J.-F. Laß, and F. Tschorsch, “Towards a concurrent and

distributed route selection for payment channel networks,” in Data
Privacy Management, Cryptocurrencies and Blockchain Technology.
Springer, 2017, pp. 411–419.

[16] S. Roos, P. Moreno-Sanchez, A. Kate, and I. Goldberg, “Settling
payments fast and private: Efficient decentralized routing for path-based
transactions,” in NDSS, 2017.

[17] J. W. Suurballe and R. E. Tarjan, “A quick method for finding shortest
pairs of disjoint paths,” Networks, vol. 14, no. 2, pp. 325–336, 1984.

[18] M. Trillo, “Stress test prepares visanet for the most wonderful time of
the year (2013),” 2013.

[19] P. F. Tsuchiya, “The landmark hierarchy: a new hierarchy for routing
in very ltaiarge networks,” in SIGCOMM, vol. 18, no. 4. ACM, 1988,
pp. 35–42.

[20] R. Yu, G. Xue, V. T. Kilari, D. Yang, and J. Tang, “CoinExpress: A
fast payment routing mechanism in blockchain-based payment channel
networks,” in ICCCN. IEEE, 2018, pp. 1–9.

[21] Y. Zhang, D. Yang, and G. Xue, “Cheapay: An optimal algorithm for fee
minimization in blockchain-based payment channel networks,” in ICC.
IEEE, 2019.

