A Linguistics-based Stacking Approach to
Disposable Domains Detection

Yuwei Zeng*', Yongzheng Zhang*!, Tianning Zang*f, Xunxun Chen*¥, and Yipeng Wang*!
* Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
T School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
1 National Computer Network Emergency Response Technical Team/Coordination Center of China, Beijing, China
Email: zangtianning @iie.ac.cn, xx-chen@139.com

Abstract—More Internet services tend to collect the one-
time information from clients via DNS queries. Notably, the
uncertainty of such transient information makes these domain
names be queried only once in their lifetime. This type of domain
is called disposable domain. Although they are not malicious,
the efficiency of DNS infrastructures will still be affected by
their ever-increasing number. In this paper, we propose Vogers,
a linguistics-based stacking model, to detect the disposable
domains. Our evaluation demonstrates that Vogers decreases the
false positive rate by more than 19%, compared with the prior
art, while maintaining the true positive rate above 98.9%

I. INTRODUCTION

This paper concentrates on disposable domain names, which
are leveraged by some Internet services to convey provisional
information from clients to servers [1]. These domain names
are automatically generated by algorithms in bulk. But un-
like some DNS-based covert channels [2], disposable domain
names are not malicious. For instance, the domain name ‘only-
930918-111-207-250-35.nstool.netease.com’ is generated by a
DNS configuration check service of NetEase. This service
compresses the client’s DNS address, IP address, and current
timestamp into the subdomain of ‘nstool.netease.com’, and
actively queries the combined domain name to inspect the re-
lated configurations. However, the uncertainty of such system
information makes every generated domain name quite unique,
which means that these domain names will be queried only
once in their lifetime. According to the existing literature [3],
27.6% of all queried domain names are disposable, resulting in
a bloated DNS ecosystem. Obviously, such disposable domains
can severely influence the efficiency of DNS infrastructures in
two aspects. First, an influx of disposable domains will drain
the available cache space of DNS resolvers, and even crowd
out the resource records associated with popular domains,
which inevitably degrades the response efficiency of recursive
DNS resolvers. Second, disposable domains affect the effi-
ciency of PDNS database. Redundant disposable domains will
put unnecessary storage pressure on the database and affect its
I/O speed. It is therefore necessary for researchers to detect
and eliminate such disposable domains.

We propose a stacking system, called Vogers, to detect dis-
posable domains. This system can determine whether the input
domain name is disposable solely based on the domain name

978-1-7281-2700-2/19/$31.00 2019 © IEEE

itself without any additional intelligence. Besides, Vogers does
not require any scale information and can directly act on a
single domain name. This system has three modules. The first
module is feature extractor, which is to obtain the linguistic
features of domain names. The second module is three parallel
readability score assigners. This module assigns readability
scores to domain names as a function of the linguistic features
of three parts, namely the prefix, the longest label in the prefix,
and the suffix. The last module, a binary classifier, determines
the category of each domain name based on three readability
scores output by the former.

II. DATA ANALYSIS

We enumerate six samples in Table I. Among them, three
samples are disposable domains, and the remaining three are
normal domains. It is clear that the subdomain names of
disposable samples own obvious DGA-like appearances.

In addition to these typical disposable domains, we also
find numerous normal domains that exhibit the identical traffic
profile as disposable ones. As the fifth to eighth samples
in Table I, these domains are mainly used for two services,
namely blogs and e-commerce. In order to facilitate users to
manage their homepages, some platforms provide each user
with a unique subdomain name. However, the vast majority of
homepages have fallen into the state of neglect, hence present
the same query frequency as disposable domains.

Observing the subdomain name of each sample in Table
I, we find that these two types differ greatly in character
composition. The prefixes of disposable domains consist of
arbitrary alphabetical and numerical characters, both verbose
and unreadable. While the appearance of normal domains
are exactly the opposite so that we can easily divide them
into meaningful words. To verify the pervasiveness of such
linguistic disparities between disposable and normal domains,
we randomly select 900 samples from each type and calculate
the linguistic metrics of their prefixes. Here we employ two
widely-used metrics, length and word ratio. When calculating
the word ratio, we apply an open source tokenizer that splits
a string into tokens based on a preloaded dictionary [4]. Since
a domain name includes not only alphabets but also numbers
and hyphens, we further split all numbers and hyphens into
separate tokens (e.g., ‘hello-12’ will be split into ‘hello’, ‘-
, ‘17, 2°). Let s be a subdomain, and ki, ko, ..., k, be the

TABLE I

REPRESENTATIVE DOMAIN NAME SAMPLES WITH ONLY ONE QUERY ON 04/27/2018.

Subdomain Name Domain Zone IP Address | Word Ratio Type
1 | p4-aiee25cwbebug-nljfouhSmmh2zt5s-if-v6exp3-v4 | metric.gstatic.com | 216.58.200.* 36.96% Disposable
2 only-491874-116-5-86-20 nstool.netease.com 59.111.0.* 34.78% Disposable
3 | a56e616288e6b61e33695d15ddeeb5a20.profile.jax1 cloudfront.net 13.32.241.* 26.09% Disposable
4 flowerqingse lofter.com 60.217.239.* 75.00% Normal
5 bestScooking tumblr.com 31.13.69.%* 75.00% Normal
6 zhongjiliyu fang.com 124.251.87.* 63.64% Normal
10— 1.0
| P - SN
0.8{ / 0.8 - || Assigner A, ||
505 | 505] I , 31 . P reoult
sl ST] BOR oy e
02| | — oo 02 e ., JEH W
) -- Normal _— -+ Normal s : Assigner A |1
005 30 60 90 120 150 %62 o4 o6 08 To o too—o '

Length Word Ratio

(a) Length Distribution. (b) Word Ratio Distribution.

Fig. 1. Linguistic metrics of disposable domains and normal domains.

token series of s. Denote L(z) as the number of tokens in the
sequence x. We define the word ratio wr of a subdomain s as
wr(s) =1-— W Naturally, a string with too many
tokens is bound to have a lower word ratio. Fig. 1 presents the
cumulative distributions of these metrics. For normal samples,
almost all of their prefixes are less than 30 in length. But for
disposable domains, only 60% of prefixes are shorter than 30.
The difference in word ratio between these two types is more
prominent. If we take 0.5 as a word ratio threshold, then more
than 95% of disposable domains are below that, and more than
80% of normal domains are above that. These observations
are easy to understand. To convey as much data as possible,
disposable domains use certain compression algorithms, which
makes the subdomains lengthy and unreadable. While normal
domains are designed to provide direct Internet services. They
are always short and easy to memorize, thus prompting users
to frequently visit them.

Taken the above analysis together, although the large sub-
domain scale and the nearly zero cache hit rate are the
most two obvious characteristics of disposable domains from
the macro point of view, they neither can be the decisive
criterion to identify disposable domains. The key insight here
is such domains are algorithmically generated. Therefore, we
should probe deeply into the more underlying features when
dissecting the disposable domains. Just like the methodology
used in mining malicious DGA domains, we can distinguish
the disposable domains from the normal ones by leveraging a
series of linguistic features.

III. OUR APPROACH

According to the aforementioned analysis results, we pro-
pose a stacking model, called Vogers, to identify disposable
domains from raw DNS traffic. The framework of Vogers
is shown in Fig. 2. This system consists of three modules:
feature extractor, readability score assigner, and the final
binary classifier. We will discuss these three modules in depth
throughout the remainder of this section.

Fig. 2. Architecture of Vogers.
A. Feature Extractor

This module takes the original domain names as input,
outputs three feature vectors of such domain names. Before
doing so, we should clarify what the three feature vectors
represent for. It is known that the entire domain name of
a malicious DGA domain is algorithmically generated. So
previous works on the linguistic features of domain names all
treat the entire domain name as a whole to analyze. While we
find that, unlike malicious DGA domains, the auto-generation
parts of disposable domains only exist in their prefixes, and
the suffixes are the same as normal ones. Hence, there is a
need to analyze the prefixes and suffixes of disposable domains
separately. However, given a multilevel domain name, it is hard
to tell which separate dot is the cut-off point between prefix
and suffix. Thus, to simplify the process, we conservatively
specify the 2LD as the suffix and the rest as the prefix.

Additionally, even if the prefixes of disposable domains are
automatically generated, some meaningful words are explicitly
introduced as identifiers in particular labels. Such identifiers
dramatically increase the word ratio of the entire prefix.
Thus, we should consciously amplify the impact of the auto-
generated part on overall readability. Here, we choose to
extract the longest label in the prefix as the ‘attention signal’
and put it on an equal footing with the prefix.

Given the above, we consider the readability of a domain
name from three aspects, namely the prefix, the longest label in
the prefix, and the suffix. Whereafter, we extract the linguistic
features for each aspect which will be expounded in Section
IV. For the convenience of presentation, we notate the prefix,
the longest label in the prefix, and the suffix of a domain
name d as dp, dl, and ds, respectively. The feature vector
is notated as F. Finally, this module outputs three feature
vectors, namely the feature vector JF,, of dp, the feature vector
Fi of di, and the feature vector F, of ds. Among them, F), has
12 dimensions, F; and F, have 10 dimensions, respectively.
These feature vectors are then fed into the next module.

B. Readability Score Assigner

We construct three readability score assigners to learn the
readability differences among different domain types in dp,

dl, and ds, which are notated as A,, A;, and A;, respectively.
Each assigner takes a linguistic feature vector as input, and
outputs a readability score between 0 and 1. The higher the
score, the better the readability.

More specifically, each assigner is actually a binary clas-
sifier. In the training stage, we apply different training sets
for each assigner in accordance with their distinct learning
objectives. When training A, the dataset is composed of the
prefixes of disposable domains and normal domains. When
training .4;, we directly extract the longest label of each
sample in prefix set to form the training set of this task.
When training A;, we adopt the effective 2LDs from two
authoritative public data sets. One is the Alexa Top List,
which records the most popular benign domains. The other
is the DGArchive [5], which provides the daily generated
DGA samples. In each dataset, we construct 30,000 positive
samples and 30,000 negative samples, respectively. The feature
vectors associated with auto-generated parts are labeled as O
(negative), while those associated with man-made parts are
labeled as 1 (positive).

When the training reaches convergence, given a feature
vector as input, the relative assigners will output the prob-
abilities on both positive and negative categories. We take
the probability value of the positive category as the final
readability score. Finally, this module outputs three scores,
namely s,, s;, and sg, that correspond to the readability of
dp, dl, and ds, respectively.

C. Score Classifier

So far, we have obtained the readability scores of the three
representative parts of domain names. To achieve the final
detection target, we aggregate the three output readability
scores into a 3-dimensional feature vector through stacking
ensemble. Next, we construct a binary classifier, notated as
Cs, which takes the aggregated feature vectors as input, and
outputs the final discrimination results. To train this classifier,
we carefully select 10,000 disposable domains as negative
samples (labeled as 0) and 10,000 normal domains as positive
samples (labeled as 1). To avoid mistakenly classify malicious
DGA domains as disposable domains, we additionally add
5,000 DGA domains into the positive sample set. All of
these samples have been converted into 3-dimensional feature
vectors through the first two modules. It is important to claim
that the additional selection of malicious DGA domains as
positive samples does not mean the readability of malicious
DGA domains is similar to that of normal domains. What
we actually aim to emphasize is the readability discrepancy
between prefixes and suffixes of the disposable domains.

IV. FEATURES

In this section, we craft a series of linguistic features to
quantify the so-called readability. Inspired by the ideas in [6],
[7], we construct 12 basic linguistic features:

o (F1) Length. As exemplified in Fig. 1(a), to carry as

much information as possible, the auto-generated parts
are naturally longer than the man-made parts.

o (F2) Label Level. Since both dl and ds are one of the
labels in domain d, we only employ this feature in dp.
Besides, we consider both separate dots and hyphens
as the division point of labels. As shown in Table III,
the subdomain of disposable domains tend to have more
division points, compared with the normal domains, and
thus have higher label levels.

o (F3) Average Label Length. This feature is equal to
the total length of labels divided by the label levels.
Because both dl and ds have only one label, this feature
exclusively serves for the prefix dp.

+ (F4 - F6) Vowel Ratio, Consonant Ratio, and Digit
Ratio. These three features reflect the ratio of vowels,
consonants, and digits in a given string, respectively.
The proportion and position of vowels and consonants
in a word determines how it is pronounced. Only a
domain with appropriate vowel-consonant ratio can be
remembered more easily and queried continuously.

o (F7 - F8): Consecutive Consonants Ratio, Consecutive
Digit Ratio. If a string of length greater than two is com-
posed of pure consonants (digits), we consider that string
to be consecutive consonants (digits). These two features
calculate the proportion of consecutive consonants and
consecutive digits in the given input, respectively.

e F9: Character Cardinality. This feature refers to the
number of distinct characters in the string. The longer
and more unreadable a string, the higher this feature is.

¢ F10: Inner digits number. Algorithmically generated
strings are always alternately composed of alphabets
and digits. None of the above features, however, can
reveal this positional relationship between alphabets and
digits. We introduce this feature to reflect the positional
relationship in an auto-generated string. To this end, we
first extract all the consecutive digits from a given string.
Next, we judge whether the two characters adjacent to
these substrings are alphabets or hyphens.

o F11: Word ratio. We employ this feature to explicitly
reflect the proportion of meaningful words in a given
string. The specific calculation method of word ratio has
been introduced in Section II.

o F12: Entropy. This feature reflects the uncertainty degree
of the given string. The specific calculation method of this
feature can be referred to Shannon entropy.

V. EVALUATION

This section presents the experiments that we conduct to
evaluate the performance of Vogers. First, we discuss the
problem of classifier selection. Next, we compare Vogers with
the prior art.

A. Classifier Selection

There are two modules apply classifiers in Vogers. One
is the readability score assigner, and another is the score
classifier. Among them, the former uses three classifiers in
parallel, and the latter needs one. In this subsection, we
expound the most suitable classification model in each module.

TABLE II
PERFORMANCES OF THE CLASSIFICATION MODELS IN EACH SCENARIO.

Module RF GBDT
AUC | TPR | FPR | AUC | TPR FPR
Ap 0.998 | 0.983 | 0.020 [0.999 | 0.981 | 0.012
Ay 0.997 | 0.972 | 0.028 | 0.998 | 0.975 | 0.018
As 0.996 | 0.995 | 0.032 | 0.998 | 0.996 | 0.034
Cs 0.999 | 0.995 | 0.003 | 0.999 | 0.998 | 0.001

1) Readability Score Assigner: As mentioned in Section
III-B, we have prepared 30,000 positive samples and 30,000
negative samples for each assigner. For A, and A;, we single
out 100 disposable zones and 100 normal zones, then extract
300 domains from each of them. As for the 300 samples in
each zone, 200 are used for training and 100 are used for test.
With regard to A,, we skip the selection of domain zones
and directly extract 30,000 samples from Alexa Top List and
DGArchive, 20,000 for training and 10,000 for test.

We conduct experiments to select the best performing
classification model for each assigner. Here we select three
commonly used classification models as candidates, namely
random forest (RF), gradient boosting decision tree (GBDT).
The task of these assigners is to assign reasonable readability
scores for related domains based on the input feature vectors.
We therefore do not have to pursue excessive accuracy. We
evaluate the AUC values of RF and GBDT, and their TPR
values and FPR values at the threshold of 0.5. The evaluation
results of them are listed in Table II. Compared with RF,
GBDT always has higher AUC values and lower FPR values.
Hence, we decide to employ GBDT as the classification model
of the three readability score assigners.

2) Score Classifier: This module takes the three readability
scores as input and outputs the final classification results.
Compared with the readability score assigners, this module
focuses more on accuracy. We extract 14,000 disposable
samples and 14,000 normal samples from the training set used
for A,. Moreover, we add 5,000 malicious DGA samples into
this set. Here, the disposable domains are labeled as 1, and
the others are labeled as 0. Next, we divided this set into two
parts, 80% for training and 20% for test. Similarly, we use
RF and GBDT as the candidate classification models for this
module. The metrics in Table II show that, with the same AUC
value of 0.999, the FPR value of GBDT is only 0.001 when
the threshold is set to 0.5, which is 0.002 lower than that of
RF. We therefore choose GBDT as the score classifier.

B. Comparision with the Prior Art

We reconstruct the methods proposed in [3], and compare its
performance with Vogers in the dataset used in Section V-A2.
We use AUC, TPR, and FPR to evaluate the performance of
these methods. The threshold is still set to 0.5 when calculating
the values of TPR and FPR. The specific evaluation results
are shown in the Initial column of Table III, from which we
can clearly see that Vogers has an overwhelming superiority
in detecting disposable domains. Compared with the prior
method, Vogers improves the AUC value by at least 0.0588
and lowers the FPR value by more than 0.19.

TABLE III
COMPARISON WITH PRIOR ART.
Data Source AUC TPR FPR
Vogers 0.9997 | 0.9898 | 0.0011
[3] 0.9409 | 0.9857 | 0.2001

Correlating the poor performance of Zone Miner and the
analysis results in Section II, we can draw a tentative conclu-
sion that neither cache hit rate nor subdomain scale can fun-
damentally characterize the disposable domains. The primary
reason is that the vast majority of DNS traffic is monopolized
by several hot domain zones. Although a disposable domain
will only be queried once, the traffic profile it shows is almost
the same as many unpopular domains, especially the afore-
mentioned blog-like and e-commerce domains. What substan-
tially dominates Vogers is it grasps the essence of disposable
domains that the subdomains of disposable domains are auto-
generated. Compressing the data into a fixed-length string via
certain algorithms inevitably makes the string unable to satisfy
regular lexical rules. For transmitting as much information as
possible over a finite domain length, the producers have to
compress the data in bulk, making the corresponding domain
zones full of garbled subdomains.

VI. CONCLUSION

We discuss the issue of disposable domains in this paper.
These auto-generated domains are employed by some Internet
services to gather transient information from clients. We
propose a linguistics-based stacking model, Vogers, to identify
such disposable domains. The evaluation results show that
Vogers achieve the true positive rate of 98.9% in detecting
disposable domains. In addition, compared with the prior art,
it reduces the false positive rate by more than 19%.

ACKNOWLEDGMENT

This work is supported by the National Key Research
and Development Program of China (2016YFB0801305,
2018YFB0804704) and Strategic Priority Research Program
of the Chinese Academy of Sciences (XDC02030100). The
corresponding authors are Tianning Zang and Xunxun Chen.

REFERENCES

[1] J. Pang, A. Akella, A. Shaikh, B. Krishnamurthy, and S. Seshan, “On the
responsiveness of dns-based network control,” in Proceedings of the 4th
ACM SIGCOMM conference on Internet measurement. ACM, 2004.

[2] V. Paxson, M. Christodorescu et al., “Practical comprehensive bounds
on surreptitious communication over dns,” in 22nd USENIX Security
Symposium, 2013.

[3] Y. Chen, M. Antonakakis, R. Perdisci, Y. Nadji, D. Dagon, and W. Lee,
“Dns noise: Measuring the pervasiveness of disposable domains in
modern dns traffic,” in 44th DSN. 1EEE, 2014.

[4] “Jieba text segmentation,” https://github.com/fxsjy/jieba, 2014.

[5] “DGArchive.” https://dgarchive.caad.fkie.fraunhofer.de.

[6] S. Schiippen, D. Teubert, P. Herrmann, and U. Meyer, “Fanci: Feature-

based automated nxdomain classification and intelligence,” in 27th

USENIX Security Symposium, 2018.

S. Yadav, A. K. K. Reddy, A. Reddy, and S. Ranjan, “Detecting algorith-

mically generated malicious domain names,” in Proceedings of the 10th

ACM SIGCOMM conference on Internet measurement. ACM, 2010.

[7

—

