
Graph-based Namespaces and Load Sharing for
Efficient Information Dissemination in Disasters

Mohammad Jahanian∗, Jiachen Chen†, and K. K. Ramakrishnan∗
∗University of California, Riverside, CA, USA. Email: mjaha001@ucr.edu, kk@cs.ucr.edu

†WINLAB, Rutgers University, NJ, USA. Email: jiachen@winlab.rutgers.edu

Abstract—Timely, flexible and accurate information dissemina-
tion can make a life-and-death difference in managing disasters.
Complex command structures and information organization
make such dissemination challenging. Thus, it is vital to have
an architecture with appropriate naming frameworks, adaptable
to the changing roles of participants, focused on content rather
than network addresses. To address this, we propose POISE,
a name-based and recipient-based publish/subscribe architec-
ture for efficient content dissemination in disaster management.
POISE proposes an information layer, improving on state-of-
the-art Information-Centric Networking (ICN) solutions such as
Named Data Networking (NDN) in two major ways: 1) support
for complex graph-based namespaces, and 2) automatic name-
based load-splitting. To capture the complexity and dynamicity
of disaster response command chains and information flows,
POISE proposes a graph-based naming framework, leveraged
in a dissemination protocol which exploits information layer
rendezvous points (RPs) that perform name expansions. For
improved robustness and scalability, POISE allows load-sharing
via multiple RPs each managing a subset of the namespace graph.
However, excessive workload on one RP may turn it into a “hot
spot”, thus impeding performance and reliability. To eliminate
such traffic concentration, we propose an automatic load-splitting
mechanism, consisting of a namespace graph partitioning com-
plemented by a seamless, loss-less core migration procedure. Due
to the nature of our graph partitioning and its complex objectives,
off-the-shelf graph partitioning, e.g., METIS, is inadequate.
We propose a hybrid partitioning solution, consisting of an
initial and a refinement phase. Our simulation results show that
POISE outperforms state-of-the-art solutions, demonstrating its
effectiveness in timely delivery and load-sharing.

I. INTRODUCTION

Time and again, it has been shown that properly structured
information dissemination can be tremendously beneficial and
save lives in disaster management, especially when it comes to
timely incident response; an example being the response to the
Las Vegas shooting in 2017 [1]. A huge amount of information
dissemination during disasters involves distributing it to many
participants such as incident commanders, first responders,
volunteers and civilians. Thus, having a framework for an
efficient dissemination in disasters, that ensures all relevant
actors receive the required information in a timely manner is
of paramount importance and can be very helpful.

Publish/Subscribe (pub/sub) [2]–[6] systems are a popular
means of information dissemination today, and enable one-
to-many push-based notification systems. Such a model can
be very suitable for disaster scenarios [7], [8]. Support for
multicast in the network helps pub/sub with efficiency by

greatly reducing network traffic and server/client overhead,
compared to server-based poll-based pub/sub solutions [6].
Today, IP multicast is the prevalent multicast protocol, e.g.,
in IPTV [9], albeit not in the multi-domain case (which may
be due to a variety of technical and non-technical reasons).
Despite its utility and efficiency, IP multicast has limitations
which makes it less than ideal for disaster management pub/-
sub: it is tightly intertwined with IP multicast group addresses,
does not capture any semantic relationships between groups
(e.g., the fact that one group publishes information that is
in a subcategory of another group), and is limited by its IP
address (sub-)space size. These shortcomings are problematic
in disasters where there may be complex command chains
with frequent changes and churns in the relationships. This
would put excessive burden on publishers and subscribers if
IP multicast is used [6]. To overcome these challenges, we use
a name-based multicast scheme for pub/sub [6], [7], leveraging
the concept of Information-Centric Networking (ICN).

ICN [10]–[12] enables the network layer to understand
content names, and provide forwarding and dissemination
functionality independent of location, i.e., IP addresses. This
location-independent networking is very useful for disaster
management [8], [13], [14], since often during disasters, it
is the information that matters most to first responders and
the victims in need, rather than which point of attachment in
the network it originated from. Name-based pub/sub identifies
a multicast group by its name, with the namespace capturing
the relationship among those names [6]. There are two types
of namespace design for name-based pub/sub: topic-based
and recipient-based. In topic-based pub/sub (e.g., [6]), a sub-
scriber of a named topic, e.g., “/CaliforniaWildFires”,
is interested in receiving all the content published at a
finer granularity, i.e., what is under a particular topic cat-
egory, e.g., “/CaliforniaWildFires/WoolseyFire’. In
recipient-based pub/sub [7], a subscriber of a named role, e.g.,
“/fireDepartment/fireTeam1”, must receive all messages
published to a coarser granularity, i.e., sent to everything above
that role in a command chain, e.g., to “/fireDepartment”.
We focus on recipient-based design, as it appropriately models
the nature of command chains in disaster response.

Namespace design is an integral part of ICN. State-of-
the-art ICN architectures, namely Named Data Networking
(NDN) [10], [11] supports strictly hierarchical namespaces,
implemented as prefix trees [15]. This hierarchical structure
falls short in efficiently modeling complex, multi-dimensional978-1-7281-2700-2/19/$31.00 2019 c© IEEE

namespaces [16], such as today’s increasingly complex com-
mand chains, where a role (node) can have many dimensions
(parents), e.g., time, region, department, etc. While it is
possible to convert a graph to a strict hierarchy, it will lead
to huge amount of redundancy, thus making the management
and modification of the namespace extremely costly and
inefficient. A study on a Wikipedia dump in [16] shows
that converting a typical graph-structured namespace with 106

categories (graph nodes) to its hierarchical equivalent, would
result in 6.07× 1054 categories.

We propose POISE, designing graph-based namespaces
for in-network name-based pub/sub, with the introduction of
an information layer to manage it. While POISE supports
both topic-based and recipient-based pub/sub, our focus is
on recipient-based pub/sub for disaster management. Addi-
tionally, we propose a rendezvous point (RP)-based pub/sub
protocol, with the dissemination logic following the graph-
based namespaces, to deliver all relevant information to their
intended/required recipients (mainly first responders) in a
timely manner using push-based multicast. We share the
workload among multiple RPs, where each RP is responsible
for managing a subset of the namespace graph and functions
as the core of the subscription trees associated with those
names. Often in disasters, the workload-per-RP distribution
is non-uniform and difficult to predict. For example, in a
study we conducted on how people used social media (Twitter)
during the California Wildfires in 2018, we found out that
70% of tweets asking for help were related to firefighting
(rather than police, EMT, etc.) which is more than the usual
load. In an RP-based pub/sub, this could cause an excessive
load on the RP managing names related to firefighting, thus
making it a “hot spot” [17]. While it is practically infeasible
to optimally balance the load across the whole wide-area net-
work (due to the amount of frequent periodic communication
needed), we eliminate such traffic concentration by splitting
the congested RP’s (i.e., hot spot’s) workload: the RP partitions
its namespace (sub-)graph with the objective of finding two
balanced segments while minimizing inter-RP communication,
decides which names to relinquish, and triggers the migration
of subscription tree cores related to those names to a new
RP or an existing under-loaded RP. Our graph partitioning
problem involves calculation of weights for vertices and edges.
However, due to the nature of our partitioning formulation,
these weights depend on the cut itself; thus making our
objective function a “complex” one [18]. As a result, off-
the-shelf graph partitioners such as METIS [19], which is
regarded as “the gold standard in graph partitioning” [20]
and has been widely used for graph-based load splitting and
balancing in many application domains [21]–[23], falls short.
To overcome this, we propose a hybrid splitting procedure
consisting of a heuristic (METIS) and meta-heuristic guided
search refinements (using Tabu Search [24]). Our results show
the effectiveness of our design.

The key contributions of this paper are the following:
1) A recipient-based pub/sub framework with automatic load

splitting for efficient disaster information dissemination.

2) Support for free-form graph-based namespaces and an in-
formation layer to capture rich disaster response command
chains; our simulation results show that this is more effi-
cient than using state-of-the-art hierarchical namespaces.

3) An automatic name-based load splitting with a novel hybrid
workload-driven graph partitioning procedure and a seam-
less lossless core migration mechanism; our results show
the effectiveness and correctness of our core migration, and
improved quality and resulting network efficiency of our
partitioning procedure, compared to popular off-the-shelf
graph partitioning tools.

Disasters potentially cause two major problems for incident
management: 1) Network infrastructure can get damaged, lead-
ing to intermittent connectivity [14], [25]. 2) Even if infrastruc-
ture is intact, the network and servers can experience excessive
load and congestion, making many services unavailable [7]. In
such situations, traditional means such as 911 operation would
be overloaded. Such situations have recently led civilians and
victims to use social media (e.g., Twitter) to seek help, having
their messages propagated in an un-organized, ad-hoc fashion
(e.g., repetitive Re-Tweets) [26], [27]. Our work here primarily
addresses the second issue, to have an efficient information
organization and load sharing framework that dramatically
reduces network load during disasters. Works such as [25],
[28] have been proposed to leverage DTN routing with ICN
in disasters, to manage infrastructure failures. These works,
while orthogonal to ours can be leveraged by POISE. POISE
can run on top of such DTN-based protocols in disconnected
environments. Additionally, the principles described here may
be used in other notification systems with complex name
structures as well, such as IoT environments, datacenters, and
distributed file systems (such examples described in [29]).

II. BACKGROUND AND RELATED WORK

Information-Centric Networking (ICN) [10]–[12] enables
access to named objects, independent of their locations. In
ICN, contents and entities can be named through identifiers.
Having a network layer that recognizes these identifiers can
help deliver information without separately establishing an
end-to-end communication channel, support in-network con-
tent caching, aggregate queries, and provide content-oriented
security. All these result in more efficiency, compared to
traditional host-centric networks, such as IP. Two notable
ICN architectures are NDN [10] and MobilityFirst (MF) [12].
While our proposed information layer can work on top of any
ICN or IP architecture, we focus on ICN as it is more efficient
for our name-based pub/sub in disaster scenarios [13].

Publish/Subscribe (pub/sub) has become a widely used,
popular service over the Internet, in form of RSS feeds, online
social networks, etc. Most popular pub/sub solutions today
are server-based; where subscribers either poll a logically
centralized server (via HTTP), or a long-lived connection for
timely delivery is maintained [2]. These approaches can be
limited in scalability. Broker-based solutions (e.g., ONYX [3],
TERA [4]) use an overlay network with distributed brokers,
and avoid traffic concentration. However, the dependency

of these solutions on XML data and assertions to decide
forwarding paths, couples the information structure with the
network layer, making the forwarding function complex. Hav-
ing pub/sub in the network can help with scalability, and has
been proposed for ICNs [5], [6], [30]. ICN with push-based
publish/subscribe service models [6] have been proposed.
COPSS [6] enhances the query/response model of NDN by
allowing consumers to issue a long-standing request, i.e.,
subscription, for all content related to (subsets of) a name,
whenever they are published, and can outperform IP multicast,
poll-based methods and flooding-based broadcast [6], [31], in
terms of aggregate network load and latency. CNS [7] extends
COPSS by introducing recipient-based pub/sub, that can help
with information dissemination in disaster scenarios. Our work
moves a step further by relieving the strict hierarchy restriction
to enable complex free-form graph-based namespaces.

Graph-based information organization has been gaining
attention and shown to be important because of its richness and
efficiency compared to the more traditional hierarchical struc-
tures across multiple application domains. Wikipedia is a very
popular and notable example of an information organization
system designed as a graph structure: each article can belong to
a number of categories, i.e., dimensions [32]. Graph structures
for information have been proposed and used in many other
contexts as well, e.g., databases [33]–[36], cloud computing
[37], and file systems [38]. These works have primarily
focused on information organization for storage and indexing.
Our work focuses on in-network information organization for
name-based information dissemination, extending the current
hierarchical structure of NDN [11] to a graph-based one.

Graph partitioning is an important graph operation, and
has been an area of research for decades. Optimal graph
partitioning is considered to be NP-hard [39]; solutions based
on heuristics and approximations exist. The most successful
partitioning method is multi-level partitioning [40], [41] (and
its tool METIS [19]), which using heuristics, coarsens the
graph, does an initial partitioning, and then uncoarsens it.
METIS has been widely used for load splitting and balancing
in various contexts [21]–[23]. Some use the streaming graph
partitioning approach which is used to process partitioning
a piece of data on the fly [42], [43]. These algorithms are
very fast but their solution quality is lower. This approach
is most suitable for extremely large graphs (in the order of
trillion vertices). There are approaches using iterative improve-
ment methods for graph partitioning. These methods typically
provide high quality solutions. A bad choice of the iterative
method and its parameters can make the procedure slow. Work
in [44] proposes a graph partitioning algorithm using Tabu
search, and shows that it outperforms another popular meta-
heuristic method, Simulated Annealing [45], regarding both
solution quality and timeliness. Sometimes the objective of
partitioning is more than a simple sum of weights, and can be
a complex function of the cut itself. This is characterized as the
“chicken and egg problem” in [18], as the objective function
needed for partitioning decision must be calculated after the
partitioning is done; ours belongs to this class. Approaches to

A

1

A

2

A

3

C

1

C

2

C

3

B

1

B

4

B

2

B

3

C

RP1

RP2

RP3

(a) Namespace
structure

RP

1

RP

2

RP

3

RP

4

ST(A1)

ST(A3)

ST(A2)

ST(B1)

ST(B3)

ST(B2)

ST(B4)
ST(C1)

ST(C2)

ST(C3)

SUB(C1)

PUB(A1, m)

Migrate ST(B1)

Migrate ST(B3)

U1

U2

U3

U4

R2

R1

(b) Information dissemination architecture
Fig. 1: A schematic overview of the architecture of POISE.

solve this class of problems have been proposed in works such
as [18], [46]–[48] for specific cases. The work in [18] justifies
the use of standard partitioning as a good starting point, and
then perturb it during the iterative refinement procedures.

Multicast core migration aims at moving a core-based
multicast tree [49] from one core (RP) to another, for better
load balancing or failure resiliency. Traditional core migration
works reported in [50], [51] focus on IP multicast, and
primarily focus on low-level migration criteria such as link
or node utilization, etc. We focus on criteria pertaining to
name-level workload in our work. Work in [17] shows the
need for RP migration in name-based multicast, but only
uses a random load splitting mechanism. We improve it by
formulating the workload splitting scheme through a rigorous
workload-driven graph partitioning algorithm along with a
migration procedure that is reliable and loss-less.

III. OVERVIEW OF POISE

In this section, we present a brief overview of POISE, as
shown schematically in Fig. 1. POISE’s namespace supports
free-form graph structures, as shown in Fig. 1a, rather than
being restricted to the state-of-the-art hierarchical namespaces
[11]. This enhancement is possible through decoupling of
information layer (which manages names and their relations
in their natural form, supporting any complex graphs) and the
service layer (which manages the names used for name-based
forwarding at every ICN router), which are coupled together in
current Named Data Networks [11]. Each vertex in the graph
in Fig. 1a is a name, i.e., a role or attribute, and the edges show
relations among them. POISE’s information dissemination
framework is a name-based pub/sub [7] with the support of
name-oriented core-based multicast, with rendezvous points
(RPs) being the cores for groups; each name also identifies a
multicast group. In addition to being the core for the multicast
tree (similar to traditional PIM-SM [49], NDN COPSS [6], or
MF multicast [30]), POISE’s RPs operate at the information
layer; in other words, they are information-layer-enhanced
RPs. As shown in the example in Fig. 1, the namespace is
shared among three RPs (i.e., RP1, RP2, and RP3), each RP
managing the sub-graph it is responsible for, and maintaining
the subscription trees associated with each of the names, i.e.,
groups, it is hosting; e.g., RP1 is the core for the subscription
tree (ST) for A1, A2, and A3. A name-to-RP mapping
resolution service resolves a name in the namespace to the
RP it is hosting; e.g., the name C1 would be mapped to RP3.

The subscription path is shown in Fig. 1b (in red); user U1
wants to subscribe to C1 (which implicitly means subscribing
to all ancestors of C1 in the namespace as well). U1 sends
this request as SUB(C1), without the need to know which is
the associated RP or where it resides. U1’s first hop router R1
performs the resolution and relays the request as a unicast (U)
message to the correct RP, i.e., RP3; thus, U1 joins ST (C1).
The publication path is also shown (in green); U2 wants to
publish message m to all subscribers of name A1 (which
implicitly means publishing to subscribers of all descendants
of A1 as well). U2’s first hop router relays this publication
as a unicast message to its corresponding RP, namely RP1.
Expanding A1 to its descendants (i.e., name expansion), it
sends m as a multicast (M) downstream to ST (A1) as well
as ST (A2). Additionally, RP1 recognizes that there is an edge
leading from A1 towards a name outside RP1. Thus, RP1
sends a unicast message for this name, B1 to its RP, RP2.
Note that RP1 only has visibility of namespace up until B1
and not further. Performing a similar name expansion, RP2
processes the received request by going through its namespace,
which leads to multicasting m downstream along ST (B1) and
ST (B2). Thus, users for both subscription and publication
scenarios need only send one packet, destined to only one
name; the network takes care of expanding the packet to
additional names, if needed. More details on the information
layer design and pub/sub dissemination are provided in §IV.

Each RP’s workload has a correlation with the part of
the namespace it is managing. However, additionally, the
load-per-name distribution is likely to be non-uniform, and
hard to predict. To address this, another important feature
of POISE, automatic load splitting is performed to eliminate
traffic concentration. Consider the case when RP2 encounters a
large amount of workload exceeding its threshold, thus making
it a hot spot. Triggered by this, RP2 will perform a partitioning
procedure on its own sub-graph, to provide two balanced
segments, shown as cut C in Fig. 1a. It thus decides to keep B2
and B4, and relinquish B1 and B3 to another RP (e.g., RP4),
which can be a regular ICN router configured to be a new RP
for this environment. As a result, the subscription trees for B1
and B3 will be migrated to RP4, via a core migration proce-
dure. The name-to-RP mapping will then be updated accord-
ingly. More details on the load splitting procedure are in §V.

While security is an important issue while managing disas-
ters, in this paper we mainly focus on the dissemination and
load sharing mechanisms. We assume all participants follow
the protocols honestly. We will work on enhancing our design
with security, as part of our future work.

IV. NAMESPACE AND PUB/SUB DESIGN

A. Information Layer and Graph Namespace

POISE supports free-form graph namespaces with their
natural structure for in-network information-centric dissemi-
nation, without the need to restrict them to any particular data
structure, such as a hierarchy or prefix tree as NDN [11], or
NDN-based solutions such as CNS [7] do. Fig. 2 is a simple
namespace of an incident management command structure for

Geo-Location

CA NJ

NJ Fire

First Response

Police Fire

Fire Fighting Survival Search

Inc. X Fire Inc. X EMS

Incident X

NJ FE1NJ FE2NJ FE3

F. Fighter 2Driver 1 F. Fighter 1

Fig. 2: Graph-based namespace: incident command chain example.

Geo-Location

C

A

N

J

NJ

Fir
e

First Response

Po

lic
e

F

i
r

e

Fire Fighting Survival Search

Inc. X Fire
Inc. X

EMS

Incident X

NJ

FE
1

NJ

FE
2

NJ

FE
3

F. Fighter 2
Driv

er 1
F. Fighter 1

NJ

Fir
e

NJ

FE
1

NJ

FE
2

NJ

FE
3

F. Fighter 2
Driv

er 1
F. Fighter 1

NJ

FE
2

Driv

er 1
F. Fighter 1

F. Fighter 2

r

o
o

tConvert to

hierarchy

H
ie

ra
rch

ica
l

e
q

u
iva

le
n

t o
f in

cid
e

n
t

co
m

m
a

n
d

 ch
a

in

Geo-Location

CA NJ

NJ Fire

First Response

Police Fire

Fire Fighting Survival Search

Inc. X Fire Inc. X EMS

Incident X

NJ FE1NJ FE2NJ FE3

F. Fighter 2Driver 1 F. Fighter 1

F
re

e
-f

o
rm

 g
ra

p
h

n
a

m
es

p
a

ce
 f

o
r

in
ci

d
e

n
t

co
m

m
a

n
d

 c
h

a
in

FIIB entries

/IncidentX/Inc.XFire/F.Fighting/F.Fighter2

/FirstResponse/Fire/NJFire/NJFE1/F.Fighter2

/Geo-Location/NJ/NJFire/NJFE1/F.Fighter2

…

Strictly

hierarchical

namespace

Hierarchical

name-based

forwarding

(a) State-of-the-art NDN

Graph-based

namespace

Geo-Location

CA NJ

NJ Fire

First Response

Police Fire

Fire Fighting Survival Search

Inc. X Fire Inc. X EMS

Incident X

NJ FE1NJ FE2NJ FE3

F. Fighter 2Driver 1 F. Fighter 1

F
re

e
-f

o
rm

 g
ra

p
h

n
a

m
es

p
a

ce
 f

o
r

in
ci

d
e

n
t

co
m

m
a

n
d

 c
h

a
in

FIB entries

F.Fighter2

…

Flat

name-based

forwarding

(b) POISE’s design
Fig. 3: Design choices for ICN layer.

a disaster management scenario. As we can see, it does not
follow a strict hierarchy. The incident management structure
is a directed graph, with each node in the graph being a
name that denotes a role. The higher levels denote coarser
granularity (e.g., “Fire” is a broad organizational role for
everyone having something to do with fire-related issues),
while the lower levels denote finer granularity (e.g., “NJ FE1”
denotes a specific fire engine dealing with a fire-related task in
New Jersey). Edges in the graph represent name relationships
and the direction of the edges show the flow of control in
the command chain; e.g., “NJ FE1” (NJ fire engine 1) is
a higher-level authority than “F.Fighter2” (fire fighter 2).
This representation of the namespace captures the different
dimensions in one graph, i.e., time, region, department, etc.
Modification of the namespace is achieved through addition,
modification and/or deletion of nodes and/or edges in the
graph. In the namespace graph shown in Fig. 2, two sub-
namespaces, one organizational, on the left-hand side, and
one incident-specific, on the right-hand side, are connected
through the two edges shown in red. These two red edges
represent the fact that the incident commander has dispatched
“NJ FE2” and “F.Fighter2” roles to take care of Incident
X’s “FireFighting” tasks, shortly after it occurred.

Support for graph namespaces in information dissemination
is made possible in POISE through a decoupling in the ICN
layer and the introduction of information layer, as shown
in Fig. 3. In current name-based network architectures, in
particular NDN, the information layer and service layer func-
tionalities are coupled together in the ICN layer, supported

RP1

R1

R5

R2

R4

R6

R3

FM1

FM2 FM3

FM4

Tree for F. Fighter 1

Commander

RP2

FM5

R
P

1
 N

a
m

e
 T

a
b

le

Name Children

NJ FE2 Driver 1, F. Fighter 1

Driver 1 —

F. Fighter 1 —

F. Fighter 2 —

R
P

2
 N

a
m

e
 T

a
b

le Name Children

Inc. X Fire F. Fighting, Survival S.

F. Fighting NJ FE2, F. Fighter 2

Fig. 4: Example network topology: 5 Firemen subscribe to different roles
in the namespace in Fig. 2 and 2 RPs share the workload.

at every ICN router, as shown in Fig. 3a. This restricts the
in-network namespace to one particular structure. This means
every command structure of the organizations (e.g., namespace
in Fig. 2) needs to be converted to a strict hierarchy. As
can be seen, this conversion makes the namespace unnec-
essarily larger and more complex to manage and use; i.e.,
the “F.Fighter2” node in Fig. 2 will appear 3 times in
the hierarchical equivalent on each reachable path, and will
populate 3 entries in the FIB tables, with a separate entry for
each (in this case, 3) different path leading from any root to
node “F.Fighter2”. The FIB table provides the name-based
forwarding functionality leveraging the lower layer routing
mechanism used for navigating the packet to its relevant loca-
tions. In contrast, in POISE (Fig. 3b), we decouple information
and service layer functionalities of the ICN layer. Only RPs
(designated ICN routers that perform name expansion) need to
understand and maintain name relationships in the graph. This
design choice in POISE brings a number of great benefits:

1) The ICN-layer namespace in Fig. 3b is more natural,
and thus simpler and smaller than its converted equivalent
in Fig. 3a. Each name appears once rather than multiple
times. This makes managing the namespace more efficient
and scalable, as well as its modification less costly, which
is important in the highly dynamic disaster scenario.

2) Complicated role relationships, which is prevalent in
disaster management, leads to larger FIB tables in Fig. 3a
compared to Fig. 3b. As seen in the Fig., “F.Fighter2”
appears 3 times in Fig. 3a’s FIB tables vs. once in Fig. 3b’s.
Thus, POISE consumes less ICN router memory.

3) The above difference also leads to higher number of
subscription and publication messages in Fig. 3a, when it
comes to recipient-based pub/sub, which we use here. Sub-
scribing (publishing) to role “F.Fighter2” would result in
3 subscription (publication) messages in NDN’s hierarchical
naming framework as seen in Fig. 3a, while it leads to only
one message in Fig. 3b. This makes POISE more efficient in
a disaster scenario for pub/sub as it reduces the number of
messages, thus reducing the network/user load.

B. Recipient-based Pub/Sub

POISE uses recipient-based pub/sub [7], enhanced with
an information layer supporting graph-based namespaces. In
name-based pub/sub, subscribing to a name means implicitly
also subscribing to a set of names related to that specific
name, in accordance with the namespace. POISE’s pub/sub
logic follows the command chain graph-based namespace.
Typically, first responders and volunteers subscribe to (listen

to) names, and civilians and incident commanders publish
to names. Given the namespace in Fig. 2, subscribing to
“F.Fighter2”, implicitly means also subscribing to all of
its ancestors, i.e., “NJ FE1”, “FireFighting”, “NJ Fire”,
etc. Conversely, publishing to “NJ Fire”, implicitly means
also publishing to all of its descendants, i.e., “NJ FE1”, “NJ
FE2”, “F.Fighter2”, etc. Expanding a name to all of its de-
scendants on the publication path according to the namespace
graph, is performed by the RPs, in a load-shared way. This de-
sign is beneficial in disaster management where dynamically-
formed interacting groups and individuals involved need to
be notified with messages relevant to their tasks in a timely
manner, whenever they are published or available, making sure
maximum coverage and accuracy is achieved.

To demonstrate the protocol exchange for the information
dissemination of POISE, we use a small example: Let us
consider the namespace graph in Fig. 2, and the topology
in Fig. 4, where we have 5 firemen (FM1-FM5), and one
commander, all connected to the network via routers R1-
R6. These firemen subscribe to different names: FM1→“NJ
FE2”, FM2→“Driver1”, FM3 and FM4→“F.Fighter1”,
and FM5→“FireFighting”. There are two RPs, with each
of their name tables shown (partially) in Fig. 4.

The commander wishes to send a message to the name
“FireFighting”, for it to be received by all relevant fire-
men. When a publication is sent to “FireFighting”, the
message will be sent to the RP serving it, namely RP2.
RP2 searches its name table to find out the reachable sub-
graph visible to it under “FireFighting”, via BFS/DFS
traversal. It sees that it needs to forward the message to
“FireFighting”, “NJ FE2” and “F.Fighter2”. Although
the name should be further expanded under “NJ FE2”, we do
not require RP2 to do this. RP2 would forward the message
as a multicast to “FireFighting” based on the subscription,
since “FireFighting” is served by itself. It then sends 2
publications to “NJ FE2” and “F.Fighter2” since it cannot
find the entries for these names in the name table. These
messages will reach RP1 based on the underlying network
performing the lookup (e.g., NDNS lookup in NDN [52] or
GNRS lookup in MF [12]) to find that RP1 is responsible for
these names, and will then get expanded at and by RP1.

An important difference between graphs and (hierarchical)
trees is the possibility of existence of cycles in graphs,
which needs to be addressed when dealing with graph-based
namespaces. While semantically it is a poor design to have
cycles in the namespace graph, it is possible that due to very
frequent changes in the namespace, it ends up having cycles
(at least during transients), which can lead to loops in the
publication dissemination paths. ICN routers, as in NDN, have
inherent support for detecting and discarding looped packets
with the use of Nonces [15]. POISE uses a similar data plane
approach for resiliency against namespace graph cycles: fresh
Nonces are used for each new end-user-generated publication
and carried in all subsequent expanded packets associated with
it. RPs maintain a list of <name, Nonce> pair for (publication)
packets they have seen; if an RP encounters a packet with

A

D

E

B

C

a

a+d

a+d+e

a+b

a+b+c

a+d

a

a

a+b

a

(a) Before partitioning

A

D

E

B

C

P1
P2

a

a+d

a+d+e

a+b

a+b+c

a+d

a

a

a+b

a

(b) Partitioning 1

A

D

E

B

C

P1
P2

a

a+d

a+d+e

a+b

2a+b+c

a+d

a
a

a+b

a

(c) Partitioning 2
Fig. 5: Partitioning impacts multicast workload weight of names.

name and Nonce matching any entry in the list, it will discard
it, thus eliminating the possibility of infinite loops.

V. AUTOMATIC LOAD SPLITTING

A. Partitioning Namespace Graphs

POISE’s namespace graph partitioning aims at distributing
the load among RPs if traffic concentration overloads an RP.
Partitioning is performed locally on the congested RP, only
on the (sub-)namespace that it is hosting. We mainly use the
monitoring of recent queue size at RPs to measure its load,
and use the recent multicast and unicast workloads (explained
later in this section) to label the graph for partitioning. Full
details of algorithms and mathematical proofs are in [29].

1) Problem Description and Solution Overview: We lever-
age graph partitioning algorithms to determine which part of
the namespace should reside at which RP for load splitting.
We treat the namespace as a directed graph with weights on
nodes and edges. The initial (input) vertex weights represent
the messages sent to each name explicitly from publishers (we
call it incoming unicast load). To determine the number of
messages multicast from a node (called multicast workload),
we need to consider the incoming unicast load of all of its
ancestors. The weight of the edges going out of a name are set
to be the multicast workload of that name. The total weight of
the edges going out of an RP to other RPs represents the total
amount of outgoing inter-RP communication (we call outgoing
unicast load). We try to balance the sum of multicast workload
and outgoing unicast load, in the two partitioned segments and
minimize the cut cost. A complexity here is that the decision of
the partitioning can alter the weights, i.e., “the chicken and egg
problem” [18], thus making the off-the-shelf graph partitioners
inadequate; we explain this with an example.

Fig. 5 shows a simple namespace graph at different stages.
Let us denote the incoming unicast load of each name (node)
as a, b, c, etc. Assuming no partitioning (i.e., whole namespace
in same RP), the multicast workload of each name is shown
in Fig. 5a (blue labels next to each name). E.g., name C

has to send out publications related to itself, A, and B to its
subscribers; thus making its multicast workload a+b+c. Edge
weights in Fig. 5, denoting the RP-to-RP communication on
that link in case it gets cut, is shown in red and is underlined.

Now let us consider partitioning the graph shown in Fig. 5.
There can be many ways to partition a graph. Two examples
are depicted in Fig. 5b and Fig. 5c. As seen in the figures,
the result of multicast workload of name C (and thus the
total cost of the resulting graph) differs in the two figures;
it is a + b + c in Fig. 5b and 2a + b + c in Fig. 5c. The
one extra message C receives from A in Fig. 5c is due to the

fact that in this scenario, B relays what it has received from
A to C, not knowing that A is also a parent of C; while in
Fig. 5b the graph cut is in a way that it does not cause such
duplication. This shows that the graph’s multicast workload
weight values are a function of partitioning itself; thus, a
standard partitioning tool with fixed weights is not sufficient to
solve our partitioning problem. We propose the use of a hybrid
approach of heuristics (classic graph partitioning) followed by
a refining meta-heuristic (guided search).

Our algorithm supports bi-partitioning as well as k-way
partitioning (with k > 2). Typically, bi-partitioning is preferred
over k-way partitioning in POISE, since: 1) it is less com-
putationally complex and more importantly 2) starting from
one RP in the beginning, it leads to fewer RPs (which means
less inter-RP communication). Additionally, POISE does a
local partitioning, using only the information at the triggered
RP. However, additional information from neighboring RP’s
can be added and considered for the partitioning decision if
needed. An extreme case of that, however, meaning a global
partitioning and placement using all the information in the
network, while theoretically possible in our graph partitioning
approach, is practically not feasible as it requires too much
communication to exchange data, which is not desirable in our
network environment. Thus, we focus on local, bi-partitioning.

2) Graph Partitioning Procedure: To prepare the graph
for partitioning, the RP labels its local namespace sub-graph,
which mainly consists of calculating and assigning multicast
workload weights to vertices, and unicast workload weights
to edges, as the example in Fig. 5 shows. The calculation of
weights are done through an iterative diffusion method which
follows the propagation logic described in §IV-B. More details
on the calculation formulae are provided in [29]. The weights
are calculated for each solution instance, including the initial
solution provided by METIS [19]. We use Tabu search for iter-
ative refinement of our graph partitioning solutions [24], [44],
as described in Algorithm 1. Each solution (candidate) of the
procedure provides a cut, which partitions the RP’s namespace
sub-graph into two segments (assuming bi-partitioning).

Algorithm 1 Graph partitioning procedure of POISE
1: Start with an initial solution (a partitioning solution),
2: Calculate the neighborhood solutions by picking vertices to move, i.e.,

put in the other partition.
3: Calculate the objective function of all neighbors.
4: Filter out the moves in the Tabu list, unless the Tabu move satisfies the

aspiration criteria, i.e., if it is better that the best solution so far.
5: Pick the neighbor with lowest objective function, as next move candidate.
6: Tabu the picked move for a number (Tabu tenure) of iterations.
7: Go to 2 if stop criteria has not been met.
8: Report minimal objective and the corresponding partition.

Initial solution: Tabu search typically starts with a random
initial solution and improves it. To get a better initial partition
[18], we try to use the result from the problem closest to ours –
the (static) multi-criteria graph partitioning where the weights
will not change according to the partition decisions. We use
METIS for this stage as it is a highly popular tool that has
been shown to be fast, while providing high quality solutions.

Objective Function: As mentioned, to reduce the search
space, we adopt a bi-partitioning approach, where the heavily
loaded RP’s namespace is partitioned to be split between two
RPs, i.e., the current RP and the new RP. The objective (fitness)
function we use to evaluate our partitioning solution, takes into
account the cost of both segments (sub-namespaces managed
by the two RPs) and provides a combined measurement of
‘minimizing the imbalance between the two RPs’, ‘minimizing
the maximum single segment load’, and ‘minimizing the
inter-RP communication’ (G1 and G2 are the two segments,
associated with the two RPs):

F (G1, G2) = α · |TC(G1)− TC(G2)|+
β ·max(TC(G1), TC(G2)) + γ · (UC(G1) + UC(G2))

(1)

where α, β, and γ are optimization coefficients. Setting higher
coefficients for some of the terms would result in the final
solution being impacted more by those terms. However, the
coefficients can be adjusted. We set all of them to 1 in our
test cases, since these values appeared to provide reasonably
good benefit, in our experiments. The aim is to minimize
F . Function UC(Gi) (segment total unicast cost) is the sum
of cut edge weights initiated in Gi, and MC(Gi) (segment
total multicast cost) is the sum of all vertex weights in Gi.
Furthermore, total load cost of a segment would be:

TC(Gi) = UC(Gi) +MC(Gi) (2)

Stopping criterion: We allow both fixed and adaptive stop
criteria. If fixed, a parameter Max Iterations i is pre-defined,
and Tabu search stops when i is reached. Our adaptive stopping
criterion, on the other hand, starts with an Iteration Base b,
and any time the ‘so far found best solution’ is changed,
b gets added to the current iteration number and makes up
the new final iteration number. This ensures that our Tabu
search procedure stops only after running with b iterations
of no improvement. To prevent the Tabu procedure to keep
iterating indefinitely, with this adaptive stopping criterion, an
upper bound on the number of iterations is also specified.

B. Migrating Cores

Once the graph partitioning is done, the names in one
segment need to be migrated to another core. The RP selection
function is similar to that in IP multicast [50], [51]. It may be
performed by a network manager or calculated by a Network
Coordinate function such as [53]. Once the RP is selected,
the process essentially migrates the names in the partitioned
subspace to the other RP. However, this has to be done
carefully because if a router discards the original subscriptions
before it receives all the publications that are in-flight (before
the original ‘pipe’ is drained), these publications will be lost.

To address this issue, we propose a 3-stage (make-before-
break) solution to ensure reliable delivery during migration,
as shown in Fig. 6. Before migration, we assume there is a
multicast tree rooted at RP1 (Fig. 6a). When RP1 decides to
move a name to RP2, in stage 1 (Fig. 6b), it notifies RP2 and
also subscribes to RP2 (creating new green line). Meanwhile, it
notifies the network that RP2 is now serving that name (routing
update in IP, FIB propagation in NDN, or a GNRS update in

RP1 RP2

(a) Before

RP1 RP2

(b) Init

RP1 RP2

(c) After M1

RP1 RP2

(d) After M2
Fig. 6: Reliable RP splitting: RP1 relinquishing a name to RP2.

TABLE I: Solution quality of alternatives and global optimum.
Vertices Edges METIS POISE Optimum Average Median

10 14 2,093 1,916 1,916 3,657.21 3,770
20 42 18,905 9,342 9,342 31,888.88 32,055

MobilityFirst). RP2 now becomes the RP for the name, and
routers with the new RP information will send publications to
RP2. However, reusing the original multicast tree, we continue
to make sure that the publications are delivered during the
transient phase. Routers may have not yet updated the name-
to-RP mapping, and there can be publications in-flight during
the mapping update. Thus, some publications to those names
will still reach RP1. We adopt the late-binding concept of
MobilityFirst: when an RP receives a publication that is not
served by itself. It hands the publication back to the network
to then be forwarded to the correct RP accordingly.

Then, at stage 2 (the ‘make’ stage), RP1 sends out a
special marker packet (we call it M1) to all the nodes in
the subscription tree. M1 is treated just as a normal multicast
packet. To make sure that all the subscribers in the tree receive
the M1 marker packet, RP1 has to send that packet after it is
sure that the new mapping has propagated into the network
and the subscriptions based on the old mapping have joined
the tree. On receiving M1, routers subscribe towards the new
RP and mark the original ones as ‘stale’ if the original entry in
the subscription table is different from the new entry. Fig. 6c
shows the subscription after M1 is propagated to the network.
The green arrows are the new subscriptions and red arrows are
the ‘stale’ ones. Note that while we mark the subscriptions as
stale, we do not delete them. When RP2 sends publications, it
sends them along all the subscription links, to ensure delivery.
A nonce can be used in the packets to eliminate redundant
traffic during this transient phase.

After all the nodes subscribe to the new RP, RP1 can
send a second marker packet (we call it M2) to start the
third and final stage (the ‘break’ stage). On receiving this
marker packet, the intermediate nodes clean up the ‘stale’
subscriptions (as is shown in Fig. 6d). When a node has
no downstream subscriptions (e.g., RP1 in the Fig.), it will
unsubscribe from the upstream naturally. Since all the nodes
have subscribed to the new RP, the M2 marker packet acts as
the last packet in the pipe. Thus, we will not lose packets if
we close the ‘pipe’ (unsubscribe) after we receive M2.

It is also important to provide resiliency to RP failures.
POISE’s RP splitting mechanism can be used for recovery.
The namespace managed by an RP would have to be backed
up and replicated (possibly pro-actively) at a backup router.
On detecting an RP failure, the backup router can become
active and using the above protocol, the subscription trees for
that part of the namespace would be shifted to the backup
RP. This would be transparent to publishers and the protocol
minimizes loss of in-transit packets.

5.79

6.29

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50

O
b

je
ct

iv
e

F
u

n
ct

io
n

 (
⨯

1
0

k
)

of Iterations

METIS

METIS+Tabu

Tabu

Random

(POISE)

Fig. 7: Partitioning effectiveness.

TABLE II: Quality of METIS vs.
POISE: Objective function.

Vertices Edges METIS POISE
10 14 2,093 1,916
10 18 2,988 2,319
10 28 5,170 2,873
50 75 11,159 3,820
50 84 99,292 57,897
100 191 25,858 20,470

TABLE III: Average notification latency &
aggregate network traffic.

Solution
Average Aggregate

Notification Network
Latency (s) Traffic (Gb)

POISE 0.018 492.39
Graph - 1RP 2.741 483.08

Graph - Random Split 4.725 625.69
Hierarchical (CNS) 247.742 866.27

VI. EVALUATION

To evaluate POISE, we compare it to a number of existing
and theoretical alternatives. In terms of overall architectures,
we compare POISE to NDN/CNS [7], a recipient-based push-
based pub/sub architecture for notification systems, which is
the closest architecture to ours. For namespaces, we compare
POISE’s graph-based naming with the most advanced state-of-
the-art ICN naming, which is NDN’s hierarchical naming (as
in CNS as well). For load-splitting, we compare POISE to the
most popular graph partitioning tool METIS [19]. We use the
same design principles of the simulator in [7], while adding the
functionality of our information layer graph namespace design
and splitting procedures. Our simulator is open-sourced and
available in [54]. For the partitioning component, we use the
current implementation of METIS [19], plus our refinement
and weight/objective calculation procedures.

A. Graph Partitioning Algorithm Evaluation

In this section, we evaluate the quality of POISE’s graph
partitioning, i.e., the hybrid “METIS+Tabu” algorithm. To
compare the quality of solutions provided by METIS, and
METIS+Tabu (starting from METIS and then doing a Tabu
search) with the global optimum (using exhaustive search), we
used two small graphs with 10 and 20 vertices as examples
(taken from [55]), as described in Table I. METIS+Tabu uses
v iterations with Tabu tenure of

√
v for a graph with v vertices.

For finding the global optimum, we generated all possible
solutions using a brute-force (exhaustive search) approach.
We also compare with average and median of all possible
partitionings, using the metrics of the average (and median)
of the objective function (Eq. 1) across all possible solutions.
As seen for the two cases in Table I, METIS+Tabu (the ap-
proach in POISE) finds the optimal solution. Considering the
complexity of the Tabu search and the brute-force approach,
we see the significant benefit of using our approach. While the
brute-force approach finds the global optimum by checking
2n−1 − 2 solutions (assuming bi-partitioning and filtering out
of duplicate permutations and no-cut solutions), Tabu finds it
by checking O(iv) candidate solutions, which in our case is
O(v2), since we set the number of iterations i to be O(v) and
at each iteration, O(v) neighboring solutions are visited and
evaluated. The table also shows that the METIS solution is
better than the average (or median) solution but is worse than
the METIS+Tabu solution (and the global optimum).

Finding the global optimum through brute-force search is
not computationally feasible for large graphs, as the number
of candidate solutions to visit grows rapidly exponentially.
Even though in Table I, METIS+Tabu found the exact global

optimum for the examples examined, this does not necessarily
have be to the case for all input graphs. For larger graphs,
we only need to do a comparative evaluation, showing that
METIS+Tabu finds relatively better, and in most cases, signif-
icantly better solutions, than alternative approaches. To show
this comparison, we use one of the graphs available online
in the repository in [55] (from its “AT&T graphs” package).
It is a directed graph with 50 vertices and 84 edges. The
graph is unweighted, so we assign random values between
0 and 100 to each vertex, to denote the incoming unicast load
for each name. Fig. 7 shows the comparison across different
alternatives, in terms of the quality of solution (objective
function) for this graph. The following scenarios are used:
Random (average of three randomly generated solutions), Tabu
(average of three runs of Tabu-only starting from random
initial solution), METIS, and METIS+Tabu (POISE). Note
that the “Random” and “METIS” scenarios are not iterative
procedures therefore achieve a fixed solution quality. We vary
the number of iterations on the Tabu-based solutions, with a
fixed stop criteria, to show how quickly the search approaches
converge to an asymptotically good quality solution.

Fig. 7 shows that METIS+Tabu outperforms the rest. Using
METIS as initial solution (METIS+Tabu) vs. starting from a
random initial point (Tabu) is very effective as the algorithm
reaches its asymptotic convergence point (for the range of iter-
ations we examined) much faster (with fewer iterations). The
Tabu-only method outperforms METIS only after a relatively
large (34) number of iterations. The METIS+Tabu approach
outperforms METIS very early, after just 5 iterations. The
random partitioning solution is much worse than the other
alternatives. Fig. 7 also shows the importance of choosing an
appropriate stop criterion. The number of iterations being too
small precludes reaching a good solution, and it being exces-
sively large results in waste of time and compute resources.

We have tried our algorithm on a number of different graphs.
Table II summarizes results for several of those graphs (taken
from [55]) of different sizes. For these cases we use the
adaptive stop criterion. For each graph with v vertices, we
choose the base iteration number to be v, Tabu tenure to be√
v and upper limit on iterations to be 10v. Comparing the

quality of solution shows that our approach (METIS+Tabu)
achieves better solutions, especially for the larger graphs.

B. Overall Solution Evaluation

To evaluate the performance of POISE, we implemented an
event-driven, packet-level simulator. The simulator supports
name-based pub/sub, exploring different alternatives within
that paradigm, using any type of multicast network layer
underneath. We can compare name-based multicast to

(a) Hierarchical & Graph - 1RP (b) Graph - Random Split (c) POISE
Fig. 8: Notification latency over time in different solutions (Note the difference in the scale of notification latency in POISE).

0

0.2

0.4

0.6

0.8

1

0.003 0.03 0.3 3 30 300

C
D

F

Notification Latency (s)

POISE Graph - 1RP Graph - Random Split Hierarchical (CNS)

Fig. 9: Notification latency CDF in different solutions.
alternatives such as pull-based pub/sub, IP multicast-based
pub/sub, and broadcast-based pub/sub such as those examined
in [6]. To evaluate the behavior, we needed a realistic network
environment with a number of forwarding routers and end-
points that are publishers and subscribers. For this, the network
topology we use to evaluate POISE and compare with various
alternatives is the Rocketfuel 1221 Telstra [56] with some
modification for a state-wide disaster scenario. Our topology
contains 46 core routers, with additional 231 routers placed at
the edge each linking to 2 core routers closest to them. We use
the graph-based “Disaster Management” category namespace
from the Wikipedia database as our namespace [57]. Exploring
6 levels below that category, we obtain 489 categories and 732
relationships. If we seek to extract a set of hierarchies based
on the approach in [16], we obtain 1,468 hierarchical names.
We use the associated pages and files from the Wikipedia
database (8,577 items total, 436 per category maximum,
17.49 on average per category) as the publications. We
duplicated each content 60 times (514,620 publications) and
ordered their publication randomly to load the network. While
the namespace is static in our experiments, the publication
workloads are dynamic and vary. Publications are generated
using a Poisson distribution (to model human behaviors such
as calling for, or offering to, help) with a monotonically
increasing arrival rate over time (to model the increasing
nature of such publications, as the disaster unfolds and more
people become aware and get involved). We experiment with
two example publication workloads: 1) moderate (average
arrival rate varying from 1,500 pkt/s to 2,000 pkt/s) and 2)
intense (arrival rate varying from 1,500 pkt/s to 3,500 pkt/s).
We create 6 subscribers for each category (2,934 in total),
distributed randomly on the 231 edge routers in the network.
Eventually we generate 20,022,480 delivery events.

Experiments with moderate workload: We first consider
the notification latency, to deliver a publication to all recipi-
ents. This reflects the impact of queuing in the network that

arises from having to route through an RP, the selection of an
appropriate number of RPs at the correct point in the network
topology, adapting to the namespace and workload. We also
look at the total network traffic to understand scalability.

We compare the performance of POISE with a number of
alternatives. First, is the use of a strict hierarchical namespace
(as in NDN/CNS). To be liberal to the hierarchical alternative,
we avoid each subscriber having to subscribe to every name.
Therefore, when there are multiple hierarchical names for a
category, he subscribes to any one of the names. The publisher
publishes to all the hierarchical names of the category. We also
compare with having a single RP (no splitting), as well as a
simple random splitting of the RP to one of the nodes in the
network. The latter is used to demonstrate the need to use a
near-optimal splitting of the RPs and load balancing in POISE.

From the CDF of the notification latency in Fig. 9 (and the
average reported in Table III), we see that due to the high
workload on the RP caused by hierarchical names, the notifi-
cation latency is excessive. Having only 1 RP (graph-1RP) as
well as random splitting of RPs perform reasonably at lower
loads (for rates <1700 pkt/s) and are even better than using
hierarchical names at low loads. However, at higher workloads,
random split and hierarchical names perform poorly compared
to POISE as well as even having just one RP.

Fig. 8 shows the notification latency as the load gradually
increases, for all the solutions. With a random split, Fig. 8b),
the notification latency goes up very rapidly after the split,
because the entire system is overloaded by packets sent back
and forth between RPs. It is even worse than having a single
RP, with no splitting (blue line in Fig. 8a). This shows the
importance of a sensible partitioning algorithm. For the same
workload, the latency of POISE (with METIS+Tabu, Fig. 8c)
is dramatically better (by 2-orders of magnitude). As the load
goes up, RP partitioning is triggered. For a short transient
period, queuing causes a relatively small (compared to other
alternatives) increase in latency. But congestion is immediately
relieved by RP splitting and the latency drops back down. The
maximum transient latency is 400 ms with POISE, compared
to multiple seconds with other alternatives.

Next, we look at the total network traffic, summarized in
Table III. Splitting the RP in POISE results in slightly higher
traffic (∼1%) due to the unicast between RPs, compared to
having only a single RP. Yet by doing so, we avoid the
significant latency impact of congestion. Random splitting of

TABLE IV: Comparison of METIS and POISE’s partitioning.
Metric METIS POISE
Moderate workload
Average latency (s) 0.018171 0.018147
Aggregated traffic (Gb) 491.242 492.392
Max Load - 2RP (#msgs) 1,321,220 1,230,533
Load imbalance - 2RP (#msgs) 360,693 633
Inter-RP messages - 2RP (#msgs) 136,571 314,139
Objective - 2RP 1,818,484 1,545,305
Intense workload
First split time (s) 40.868
Second split time (s) 150.388 174.252
Average latency in [0,170s] (s) 0.049686 0.020387

(a) METIS (b) METIS+Tabu (POISE)

Fig. 10: RP queue sizes for intense workload.

the RP performs much worse (and causing 27% more traffic
compared to sensible splitting). In fact, if one were to just
consider the relative increase in the amount of traffic because
of RP splitting (compared to having just one RP and not having
any RP splitting), then random splitting with 133.3 Gb of extra
traffic results in 14.3 times more than POISE (9.3 Gb) in terms
of extra traffic. Compared to the hierarchical solution, the
graph-based solution of POISE reduces the amount of network
traffic dramatically (by 75.9%) since we do not have to deal
with the extra names and publications.

To dig a little deeper into the impact of the partitioning
method used, we provide more detailed metrics in Table IV
to compare the use of METIS and METIS+Tabu (POISE).
For the moderate input workload, using METIS+Tabu leads
to slightly (24µs) improved average notification latency (per
delivery), while adding 0.002% total traffic. The reason for this
better latency is better balance, and thus less queuing delay,
even at the cost of slightly more traffic (just like a single RP
having the least total traffic in Table III). The load metrics
(in terms of # of messages) measure the RP load from the
time of the split until the end of simulation (i.e. during the
time the system has 2 RPs; labeled with ‘-2RP’). The table
shows the values for the three terms in Eq.1. For METIS+Tabu,
maximum RP load and load imbalance are significantly better,
while for METIS, the # inter-RP messages is lower (leading
to slightly less traffic). These combined, make METIS+Tabu’s
solution more balanced with a lower peak, as confirmed by
the ‘Objective’ (sum of the above three terms), validating the
effectiveness of our partitioning approach.

Experiments with intense workload: The benefit of
METIS+Tabu over METIS is even more significant when we
generate a higher intensity workload. The same publication
trace (for ∼300s) was generated over a shorter duration
(∼217s) by increasing the average inter-arrival rate. We also
increase the RP splitting threshold. Table IV shows the time
at which the first and the second RP splits occur; the first
split is same for both (i.e., 40.868s) while the second split

(a) METIS (b) METIS+Tabu (POISE)

Fig. 11: Notification latency for intense workload.
occurs ∼24s later with METIS+Tabu compared to METIS
(174s vs. 150s). The better balance with METIS+Tabu helps
the single RP maintain the namespace for a longer time with
lower dissemination latency; the same RP is used for 21%
longer than the case of METIS. This is important, since the
splitting procedure introduces protocol overhead (§V-B), with
additional notification latency for a short period, as shown
in Fig. 8c. Therefore, postponing splitting and reducing
its frequency during the lifetime of the overall system is
beneficial. However, if the split is postponed for too long,
this latency would increase significantly, as seen in Table IV.
For the period of [0,170s], the average notification latency of
METIS is more than twice the latency of METIS+Tabu. Fig. 10
shows the instantaneous queue size of each RP in the two
cases, for the period of [0,175s]. Most importantly, it shows
the better balance between the two RPs in case of POISE
(METIS+Tabu, Fig. 10b) than METIS (Fig. 10a). We also see
that the size of the queue in RP2 for METIS goes up above
3,000 during that period, much larger than METIS+Tabu,
which only goes up to 140 for the same time. As the figure
shows, RP1’s queue size is a little higher in POISE than
METIS. However, the queue grows much more at RP2 in
METIS than with POISE. This is the tradeoff that POISE
makes, producing a better balance between the two RPs, thus
helping prolong the need for splitting the RPs. The latency per
publication for the intense workload is also shown in Fig. 11,
indicating a much higher increase for METIS (Fig. 11a,
seeing congestion after 150s) compared to METIS+Tabu
(POISE, Fig. 11b, which stays low throughout, until 175s).

VII. CONCLUSION

We proposed POISE, an architecture for recipient-based
pub/sub for disaster management, supporting free-form graph-
based namespaces and automatic load splitting to eliminate
traffic concentration based on a novel hybrid graph partitioning
algorithm. Our simulation results show that POISE is efficient
and scalable, compared to alternatives: its graph-based names-
pace outperforms the state-of-the-art hierarchical namespace
of NDN [11]; its overall network architecture extends the
recipient-based pub/sub framework of CNS [7]; and its parti-
tioning outperforms the popular graph partitioner METIS [19].

VIII. ACKNOWLEDGEMENTS

This work was supported by the US Department of Com-
merce, National Institute of Standards and Technology (award
70NANB17H188) and US National Science Foundation grant
CNS-1818971. We thank our shepherd, Andrei Gurtov, for his
support and the reviewers for their valuable comments.

REFERENCES

[1] B. Winchel, “Las Vegas PD lauded for online response during mass
shooting,” Oct. 2017. [Online]. Available: https://www.prdaily.com/
las-vegas-pd-lauded-for-online-response-during-mass-shooting/

[2] B. Segall, D. Arnold, J. Boot, M. Henderson, and T. Phelps, “Content
based routing with elvin4,” in in Proceedings of the Australian UNIX
Users Group (AUUG2K), 2000.

[3] Y. Diao, S. Rizvi, and M. J. Franklin, “Towards an internet-scale xml
dissemination service,” in Proceedings of the Thirtieth international
conference on Very large data bases-Volume 30, 2004.

[4] R. Baldoni, R. Beraldi, V. Quema, L. Querzoni, and S. Tucci-
Piergiovanni, “Tera: topic-based event routing for peer-to-peer architec-
tures,” in Proceedings of the 2007 inaugural international conference
on Distributed event-based systems, 2007.

[5] N. Fotiou, P. Nikander, D. Trossen, and G. C. Polyzos, “Developing
information networking further: From psirp to pursuit,” in International
Conference on Broadband Communications, Networks and Systems,
2010.

[6] J. Chen, M. Arumaithurai, L. Jiao, X. Fu, and K. Ramakrishnan, “Copss:
An efficient content oriented publish/subscribe system,” in Proceedings
of the 2011 ACM/IEEE Seventh Symposium on Architectures for Net-
working and Communications Systems, 2011.

[7] J. Chen, M. Arumaithurai, X. Fu, and K. Ramakrishnan, “Cns: content-
oriented notification service for managing disasters,” in Proceedings of
the 3rd ACM Conference on Information-Centric Networking, 2016.

[8] A. Tagami, T. Yagyu, K. Sugiyama, M. Arumaithurai, K. Nakamura,
T. Hasegawa, T. Asami, and K. Ramakrishnan, “Name-based push/pull
message dissemination for disaster message board,” in 2016 IEEE
International Symposium on Local and Metropolitan Area Networks
(LANMAN). IEEE, 2016.

[9] M. Yuksel, K. K. Ramakrishnan, R. D. Doverspike, R. K. Sinha, G. Li,
K. N. Oikonomou, and D. Wang, “Cross-layer failure restoration of IP
multicast with applications to IPTV,” Computer Networks, vol. 55, no. 9,
pp. 2329–2351, 2011.

[10] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proceedings of the
5th international conference on Emerging networking experiments and
technologies, 2009.

[11] L. Zhang, D. Estrin, J. Burke, V. Jacobson, and J. Thornton, “Named
Data Networking (NDN) Project,” PARC, Tech. Report NDN-0001,
2010.

[12] A. Venkataramani, J. F. Kurose, D. Raychaudhuri, K. Nagaraja, M. Mao,
and S. Banerjee, “Mobilityfirst: a mobility-centric and trustworthy inter-
net architecture,” ACM SIGCOMM Computer Communication Review,
vol. 44, no. 3, 2014.

[13] J. Seedorf, A. Tagami, M. Arumaithurai, Y. Koizumi, N. B. Melazzi,
D. Kutscher, K. Sugiyama, T. Hasegawa, T. Asami, K. Ramakrishnan
et al., “The benefit of information centric networking for enabling com-
munications in disaster scenarios,” in 2015 IEEE Globecom Workshops
(GC Wkshps). IEEE, 2015.

[14] I. Psaras, L. Saino, M. Arumaithurai, K. Ramakrishnan, and G. Pavlou,
“Name-based replication priorities in disaster cases,” in 2014 IEEE
Conference on Computer Communications Workshops (INFOCOM WK-
SHPS). IEEE, 2014, pp. 434–439.

[15] A. Afanasyev, J. Shi et al., “Nfd developer’s guide,” Technical report,
NDN-0021, NDN, 2018.

[16] S. S. Adhatarao, J. Chen, M. Arumaithurai, X. Fu, and K. Ramakrishnan,
“Comparison of naming schema in icn,” in Local and Metropolitan Area
Networks (LANMAN), 2016 IEEE International Symposium on, 2016.

[17] J. Chen, M. Arumaithurai, X. Fu, and K. Ramakrishnan, “G-copss: A
content centric communication infrastructure for gaming applications,”
in 2012 IEEE 32nd International Conference on Distributed Computing
Systems, 2012.

[18] A. Pinar and B. Hendrickson, “Partitioning for complex objectives,” in
Proceedings of the 15th International Parallel & Distributed Processing
Symposium, 2001.

[19] G. Karypis and V. Kumar, “MeTis: Unstructured Graph Partitioning and
Sparse Matrix Ordering System, Version 4.0,” http://www.cs.umn.edu/
∼metis, University of Minnesota, Minneapolis, MN, 2009.

[20] A. Zheng, A. Labrinidis, P. H. Pisciuneri, P. K. Chrysanthis, and
P. Givi, “Paragon: Parallel architecture-aware graph partition refinement
algorithm.” in EDBT, 2016.

[21] X. Liu and A. A. Chien, “Traffic-based load balance for scalable
network emulation,” in Proceedings of the 2003 ACM/IEEE conference
on Supercomputing. ACM, 2003.

[22] C. Curino, E. Jones, Y. Zhang, and S. Madden, “Schism: A workload-
driven approach to database replication and partitioning,” Proc. VLDB
Endow., vol. 3, no. 1-2, Sep. 2010.

[23] A. Bhatele, S. Fourestier, H. Menon, L. V. Kale, and F. Pellegrini,
“Applying graph partitioning methods in measurement-based dynamic
load balancing,” Lawrence Livermore National Lab.(LLNL), Livermore,
CA (United States), Tech. Rep., 2011.

[24] Wikipedia, “Tabu search,” https://en.wikipedia.org/wiki/Tabu search,
2018.

[25] E. Monticelli, B. M. Schubert, M. Arumaithurai, X. Fu, and K. Ra-
makrishnan, “An information centric approach for communications in
disaster situations,” in 2014 IEEE 20th International Workshop on Local
& Metropolitan Area Networks (LANMAN). IEEE, 2014.

[26] M. Saunders, “Social media: California wildfires force thousands
to evacuate,” https://www.10news.com/news/social-media-california-
wildfires-force-thousands-to-evacuate, Nov. 2018.

[27] M. Jahanian, Y. Xing, J. Chen, K. Ramakrishnan, H. Seferoglu, and
M. Yuksel, “The evolving nature of disaster management in the internet
and social media era,” in 2018 IEEE International Symposium on Local
and Metropolitan Area Networks (LANMAN). IEEE, 2018, pp. 79–84.

[28] H. M. Islam, D. Lagutin, A. Lukyanenko, A. Gurtov, and A. Ylä-Jääski,
“Cidor: content distribution and retrieval in disaster networks for public
protection,” in 2017 IEEE 13th international conference on wireless and
mobile computing, networking and communications (WiMob). IEEE,
2017, pp. 324–333.

[29] M. Jahanian, J. Chen, and K. Ramakrishnan, “Graph-based Namespaces
and Load Sharing for Efficient Information Dissemination in Disasters,”
University of California, Riverside, Tech. Rep., 2019. [Online].
Available: http://www.cs.ucr.edu/∼mjaha001/POISE-TR.pdf

[30] S. Mukherjee, F. Bronzino, S. Srinivasan, J. Chen, and D. Raychaudhuri,
“Achieving scalable push multicast services using global name reso-
lution,” in Global Communications Conference (GLOBECOM), 2016
IEEE, 2016.

[31] J. Chen, M. Jahanian, and K. Ramakrishnan, “Black ice! using in-
formation centric networks for timely vehicular safety information
dissemination,” in Local and Metropolitan Area Networks (LANMAN),
2017 IEEE International Symposium on, 2017.

[32] “Wikipedia: Outline of knowledge,” https://en.wikipedia.org/wiki/Portal:
Contents/Outlines, 2019.

[33] R. Angles and C. Gutierrez, “Querying rdf data from a graph database
perspective,” in European Semantic Web Conference, 2005.

[34] R. Giugno and D. Shasha, “Graphgrep: A fast and universal method
for querying graphs,” in Pattern Recognition, 2002. Proceedings. 16th
International Conference on, vol. 2, 2002.

[35] S. Flesca and S. Greco, “Querying graph databases,” in International
Conference on Extending Database Technology, 2000.

[36] L. Cardelli, P. Gardner, and G. Ghelli, “A spatial logic for querying
graphs,” in International Colloquium on Automata, Languages, and
Programming, 2002.

[37] “Kubernetes,” https://kubernetes.io/, 2019.
[38] D. Di Sarli and F. Geraci, “Gfs: A graph-based file system enhanced with

semantic features,” in Proceedings of the 2017 International Conference
on Information System and Data Mining, 2017.

[39] A. E. Feldmann and L. Foschini, “Balanced partitions of trees and
applications,” Algorithmica, vol. 71, no. 2, 2015.

[40] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM Journal on scientific Computing,
vol. 20, no. 1, 1998.

[41] ——, “Multilevelk-way partitioning scheme for irregular graphs,” Jour-
nal of Parallel and Distributed computing, vol. 48, no. 1, 1998.

[42] I. Stanton and G. Kliot, “Streaming graph partitioning for large dis-
tributed graphs,” in Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2012.

[43] J. Nishimura and J. Ugander, “Restreaming graph partitioning: simple
versatile algorithms for advanced balancing,” in Proceedings of the 19th
ACM SIGKDD international conference on Knowledge discovery and
data mining, 2013.

[44] E. Rolland, H. Pirkul, and F. Glover, “Tabu search for graph partition-
ing,” Annals of Operations Research, vol. 63, no. 2, 1996.

[45] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon,
“Optimization by simulated annealing: an experimental evaluation; part
i, graph partitioning,” Operations research, vol. 37, no. 6, 1989.

[46] B. Uçar and C. Aykanat, “Encapsulating multiple communication-cost
metrics in partitioning sparse rectangular matrices for parallel matrix-
vector multiplies,” SIAM Journal on Scientific Computing, vol. 25, no. 6,
2004.

[47] I. Moulitsas and G. Karypis, “Partitioning algorithms for simultaneously
balancing iterative and direct methods,” Minnesota Univ Minneapolis
Dept of Computer Science, Tech. Rep., 2004.

[48] R. H. Bisseling and W. Meesen, “Communication balancing in parallel
sparse matrix-vector multiplication,” Electronic Transactions on Numer-
ical Analysis, vol. 21, 2005.

[49] B. Fenner, M. Handley, H. Holbrook, and I. Kouvelas, “Protocol
Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification
(Revised),” RFC 4601, August 2006.

[50] M. J. Donahoo and E. W. Zegura, “Core migration for dynamic multicast
routing,” Georgia Institute of Technology, Tech. Rep., 1995.

[51] Ying-Dar Lin, Nai-Bin Hsu, and Chen-Ju Pan, “Extension of rp reloca-
tion to pim-sm multicast routing,” in ICC 2001. IEEE International Con-
ference on Communications. Conference Record (Cat. No.01CH37240),
vol. 1, 2001, pp. 234–238 vol.1.

[52] A. Afanasyev, X. Jiang, Y. Yu, J. Tan, Y. Xia, A. Mankin, and L. Zhang,
“Ndns: A dns-like name service for ndn,” in Computer Communication
and Networks (ICCCN), 2017 26th International Conference on, 2017.

[53] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: a decentralized
network coordinate system,” in SIGCOMM, 2004.

[54] “Poise simulator,” 2019. [Online]. Available: https://github.com/
SAIDProtocol/NetworkSimulator

[55] GDdata, “Graph Drawing,” http://www.graphdrawing.org/data.html,
2018.

[56] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson, “Inferring link
weights using end-to-end measurements,” in Proceedings of the 2nd
ACM SIGCOMM Workshop on Internet measurment, 2002.

[57] Wikipedia, “Category:Disaster management,” https://en.wikipedia.org/
wiki/Category:Disaster management, 2018.

