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Abstract—With the unprecedented prevalence of mobile net-
work applications, cryptographic protocols, such as the Secure
Socket Layer/Transport Layer Security (SSL/TLS), are widely
used in mobile network applications for communication security.
The proven methods for encrypted video stream classification
or encrypted protocol detection are unsuitable for the SSL/TLS
traffic. Consequently, application-level traffic classification based
networking and security services are facing severe challenges
in effectiveness. Existing encrypted traffic classification meth-
ods exhibit unsatisfying accuracy for applications with similar
state characteristics. In this paper, we propose a multiple-
attribute-based encrypted traffic classification system named
Multi-Attribute Associated Fingerprints (MAAF). We develop
MAAF based on the two key insights that the DNS traces
generated during the application runtime contain classification
guidance information and that the handshake certificates in
the encrypted flows can provide classification clues. Apart from
the exploitation of key insights, MAAF employs the context of
the encrypted traffic to overcome the attribute-lacking problem
during the classification. Our experimental results demonstrate
that MAAF achieves 98.69% accuracy on the real-world traceset
that consists of 16 applications, supports the early prediction, and
is robust to the scale of the training traceset. Besides, MAAF is
superior to the state-of-the-art methods in terms of both accuracy
and robustness.

Index Terms—Encrypted traffic classification, SSL/TLS, do-
main name, certificate, application data, network management.

I. INTRODUCTION

A. Motivation and Problem Statement

This paper concerns mobile encrypted traffic classification,
which is to classify mobile encrypted flows into specific
applications. With the rapid development of mobile appli-
cations and mobile network in recent years, the number of
applications and application downloads in application markets
grows continuously [1]. In order to ensure the security of
mobile applications, both of the two largest mobile application
markets, App Store [2] and Google Play [3], have published
enforced encryption standards [4], [5], which adopt Secure
Sockets Layer/Transport Layer Security (SSL/TLS) [6]–[8] as
their encryption basics. As a result, most of the applications
use the encrypted protocol SSL/TLS to communicate with
servers, which leads to the high proportion of the SSL/TLS
traffic in mobile networks.

High-accuracy encrypted traffic classification is fundamen-
tal to plenty of current and future networking and security
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Fig. 1. An Example of the SSL/TLS Protocol Communication Session

services, such as policy-based network traffic managemen-
t, application Quality-of-Service (QoS) and application-level
firewalls [9]. Taking application QoS as an example, the enter-
prise network administrator may intend to prioritize the quality
of service for certain specific applications and assign a lower
network communication priority to the applications that do not
comply with the network policy. The proven encrypted traffic
classification approaches focus on identifying encrypted video
stream [10] or classifying an encrypted protocol traffic from
others [11]. The SSL/TLS oriented approaches [12]–[14] lack
a balance between classification accuracy and computational
complexity. Therefore, we need to address the crucial problem
of encrypted traffic classification to cope with the management
of the growing mobile network traffic.

B. Related Work and Their Limitations

In this subsection, we first present the basics of the SSL/TLS
protocol. Then, we introduce the most relevant and recent
encrypted traffic classification methods [12]–[16] and discuss
their limitations. Finally, we analyze the limitations of the
traceset collection in these relevant papers.978-1-7281-2700-2/19/$31.00 2019 c© IEEE



TABLE I
NOTATIONS AND MESSAGE TYPES OF SSL/TLS

Notation Message Type Notation Message Type
20 Change Cipher Spec 22:11 Certificate
21 Alert 22:12 Server Key Exchange
22 Handshake 22:13 Certificate Request

22:0 Hello Request 22:14 Server Hello Done
22:1 Client Hello 22:15 Certificate Verify
22:2 Server Hello 22:16 Client Key Exchange
22:3 Hello Verify Request 22:20 Finished
22:4 New Session Ticket 23 Application Data

1) SSL/TLS Basics: The Secure Sockets Layer (SSL) pro-
tocol [6] and its successor Transport Layer Security (TLS)
protocol [7], [8] are popular cryptographic protocols that
secure the communication between the client and server by
encrypting the communication payloads. Figure 1 shows an
example of the SSL/TLS protocol communication session.
Table I presents the message types and their notations of
SSL/TLS. In a typical SSL/TLS session, the two communi-
cation sides first exchange Client Hello and Server
Hello to establish the session. Then, the two sides use
four kinds of messages, Server Certificate, Server
Key Exchange, Client Certificate, and Client
Key Exchange, to agree on a master secret. The Change
Cipher Spec and Server Finished Message from
the server indicates the completion of the handshake. Next,
the server starts to transfer Application Data, i.e., the
communication payload. Finally, the session terminates with
an Alert message from the server. Due to the high compu-
tational cost of public key operations, the protocol allows the
server to resume an old session to improve the efficiency of
the handshake [7], [8]. Compared with the typical sessions,
the resumed session discards Certificate, Server Key
Exchange, and Certificate Request while using ses-
sion IDs or session tickets instead [8].

2) Prior Arts and Their Limitations: The prior arts can be
classified into two categories, message-type-based methods,
and packet-length-based methods.

The basic idea of the message-type-based methods is to
regard the message type sequence of the SSL/TLS session as
a Markov chain. Korczyński et al. [12] first introduce the con-
cept of the Markov chain fingerprinting and employ first-order
homogeneous Markov chains to model possible sequences of
the SSL/TLS message types. Shen et al. [13], [14] extend
the concept of message type Markov chain fingerprinting
by incorporating second-order message type Markov chains
with the lengths of Certificate and first Application
Data in the session. They propose second-order Markov chain
fingerprints with application attribute bigrams (SOB) to make
this kind of method more suitable for capturing distinctive
characteristics of the applications.

The packet-length-based methods model the packet length
sequences through Markov chains or neural networks. Liu et
al. [15] introduce the concept of Length Block sequence, and
propose a method named multi-attribute Markov probability
fingerprints (MaMPF). According to the power law distribution
of the packet length frequency, MaMPF converts the packet

length sequence into a Length Block sequence to reduce the
unique number of packet lengths by replacing low-frequency
packet length with the closest high-frequency packet length.
Then, MaMPF applies first-order Markov chains to model the
Length Block sequences. Recently, Liu et al. [16] propose
Flow Sequence Network (FS-Net), which adopts a multi-layer
recurrent neural network based encoder-decoder structure to
generate the features of packet length sequence and then
directly predict the original applications of the flows.

However, these methods have three limitations. 1) The
repeating message type subsequences between different ap-
plications grow sharply as the number of applications in-
creases, which greatly weakens the discrimination capability
of message types. 2) The methods using attribute bigrams
only capture the coarse-grained characteristics and ignore
the content of Certificate. When the Certificate
lengths of two different flows are close, their Certificates
characteristic will be considered the same. As a result, these
two flows are likely to be classified as the same application. 3)
Some networking and security services need early prediction
results to conduct related policies before the transmission
of communication payloads. However, these sequence-based
methods are unable to accurately predict the original applica-
tions of the flows with inadequate sequence information.

3) Limitations of Traceset Collection: The experimental
SSL/TLS tracesets in all the mentioned papers are extracted
from the unlabeled port mirroring network traces [17] by
matching the IP address resolved from the application-related
domain names. Indeed, domain names are the preliminary
information that typically exists before the establishment of
network sessions. However, these tracesets are still not reliable
for the following two reasons:

• The application services of the collected tracesets may be
incomplete. Mobile applications typically adopt domain
names to tag the entrance of certain services. When
only partial application-related domain names are used
in the traceset collection, the diversity of the application
services decreases. In addition, the statistical analysis
on our tracesets shows that about 25% - 30% of the
flows are not correlated with any domain name and have
no chance to be matched in the traceset collection. As
a result, the message type sequences or packet length
sequences will be more similar in each application but
be more distinguishable between different applications,
which reduces the difficulty of the classification task and
the reliability of the experimental results.

• The application-related domain names employed in the
traceset collection may be inappropriate. When different
applications use same domain names to direct application
services, we are unable to determine the actual applica-
tion of the matching flows. Whatever application applied
to these impure flows, the accuracy of the labels in the
traceset will be reduced, which affects the persuasiveness
of the experimental results.

This paper addresses all of the above limitations.
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C. Proposed Approach

1) Our Insights into Encrypted Traffic Classification:
This paper is based on the following two insights. 1) The
DNS traces generated during the application runtime
contain classification guidance information. The DNS-based
load balancing topology, as shown in Figure 2, is popularly
employed by applications to balance the workload distribu-
tion of the application servers. When an application starts
to run, the application client first launches preset domain
name queries to obtain the optimal server IP addresses and
then establishes sessions with the server for communication.
Therefore, the large-traffic domain names are likely to be the
application-related domain names. We can use the amount
of correlated traffic to represent the correlation between the
domain name and the applications in the traceset. 2) The
handshake certificate in the encrypted flows provide clues
for the classification. We notice that some subjects in the
X.509 certificates [18] can be essential characteristics for the
classification. The subject Common Name [18] (OID = 2.5.4.3,
OID is the abbreviation of object identifier) in the end-entity
certificate, the final certificate signed for servers [18], typically
stores the glob domain name of the servers. The subject
Organization [18] (OID = 2.5.4.10) in the end-entity certificate
reveals the organization information of the servers. Similar to
the domain name mentioned above, we can use the amount
of correlated traffic to represent the correlation between the
subject and the applications in the traceset.

In order to ascertain the availability of the domain names
and certificates, we conduct statistical analysis on the flows
starting from a domain name query or containing a certificate
in our manually collected traceset. We find that 1) 71.7%
of the flows start from a domain name query, 2) 79.9% of
the flows contain an X.509 certificate, and 3) 90.7% of the
flows either start from a domain name query or contain an
X.509 certificate. The statistical results greatly support the
availability of the domain names and certificates.

2) Brief Introduction to Our System: Based on our two
insights, we propose a multi-attribute-based encrypted traf-
fic classification system named Multi-Attribute Associated
Fingerprints (MAAF), which utilizes both the DNS traces
generated during application runtime and the certificate in
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the encrypted flows. Figure 3 presents the system structure of
MAAF, which consists of a training phase and a classification
phase. The training phase, composed of a preprocessor, an
attribute vector generator, a context utilizer, and a model
trainer, takes the encrypted flows in the training traceset as
input to build the attribute - application correlation dictionar-
ies and train a multi-attribute associated vector classification
model. The classification phase, consisting of a preprocessor,
an attribute vector generator, a context utilizer, and a classifier,
makes use of the dictionaries and classification model from
the training phase to predict the original applications of the
encrypted flows. The preprocessor in both phases extracts the
specified attributes of the encrypted flows, namely Domain
Name, Common Name, and Organization, for the attribute
vector generation. In particular, the preprocessor in the training
phase builds attribute - application correlation dictionaries
for the training traceset which store the correlation strength
between the attribute values and the applications. Then, the
attribute vector generator in both phases generates attribute
vectors for the encrypted flows by combining the correlation
strength selected from the attribute - application correlation
dictionaries with the Application Data lengths. Based
on the fact that the flows generated by a single application
client cluster in the timeline, the context utilizer in both train-
ing phase and classification phase exploits the contextual flows
to create the multi-attribute associated vectors. The model
trainer trains a supervised classification model for the multi-
attribute associated vectors of the training encrypted flows. The
classifier employs the classification model to classify multi-
attribute associated vectors of the unlabeled encrypted flows
and predict the applications to which these flows belong.

D. Novelty and Advantages of Our Approach

We conclude the key novelty and advantages of MAAF as
follows:

• We excavate the fine-grained characteristics from en-
crypted flows, namely the correlation strength be-
tween the specified attributes and the applications, the
Application Data lengths, and the contextual in-
formation. These characteristics work independently and
can be recombined according to the practical needs of
networking or security services. For example, we can



discard the Application Data lengths to make early
predictions with acceptable accuracy. Based on the early
prediction results, the networking or security services can
conduct the preset policies to the incoming communica-
tion payloads of the encrypted flows.

• MAAF overcomes the attribute-lacking problem in the
classification caused by the availability of the DNS
traces and the certificates in the flows. For the partial-
attribute-lacking flows, MAAF can predict their original
applications accurately because the specified attributes
work independently and can be used individually for
accurate prediction. For the full-attribute-lacking flows,
we make use of the contextual flows to support the correct
classification based on the temporal clustering of the
flows generated by an application instance.

E. Key Contributions

We briefly summarize our main contributions as follows:
• We propose Multi-Attribute Associated Fingerprints

(MAAF) for the encrypted traffic classification, which
exploits DNS traces, certificates, Application Data
lengths, and contextual flows to predict the original
applications of the encrypted flows.

• MAAF constructs attribute vectors for encrypted flows to
represent the historical correlation strength between the
specified attributes and the applications, and then utilizes
the contextual flows to enrich the historical information.

• We evaluate the effectiveness of MAAF by two real-
world tracesets. The experimental results show 98.69%
accuracy on the manually collected traceset and ideal
robustness to different tracesets, which indicates that
MAAF outperforms several state-of-the-art methods.

The rest of this paper is organized as follows. Section II in-
troduces the systematic design of MAAF. Section III describes
the details of the traceset collection and presents the tracesets
used in this paper. Section IV describes the experimental
settings and presents the evaluation results. Section V presents
the comparison results with the state-of-the-art approaches.
Section VI discusses and concludes this paper.

II. MULTI-ATTRIBUTE ASSOCIATED FINGERPRINTS

In this section, we present the details of the Multi-Attribute
Associated Fingerprint (MAAF). MAAF consists of a training
phase and a classification phase, as shown in Figure 3.

A. Preprocessor

Both the training phase and the classification phase contain
a preprocessor, which extracts Domain Name, Common Name,
and Organization from the encrypted flows and constructs
attribute - application correlation dictionaries for the training
traceset. For the extraction of Domain Name, the preprocessor
tries to map the server IP addresses of the flows to the
domain names according to the historical DNS traces, that
is, searching for the domain names that have been resolved
to the server IP addresses. The Common Name and Or-
ganization [18] are directly extracted from the end-entity

certificates, the final certificate signed to servers as a proof
of identity [18], by matching the object identifier 2.5.4.3 and
2.5.4.10, respectively. The end-entity certificates can be found
in the handshake of SSL/TLS flows. Considering that the
session-resumed flows discard Certificate during session
handshake, the preprocessor restores the attributes of these
flows by referring to their contextual flows. To be specific, for
these session-resumed flows, the preprocessor first tries to find
the latest historical certificate-containing flow that matches the
same host IP addresses and then copies the attribute values of
that historical flow.

In the training phase, we also build three attribute - appli-
cation correlation dictionaries: Domain Name - Application,
Common Name - Application, and Organization - Application
correlation dictionaries. Each dictionary stores the correlation
strength between the attribute values and the applications to
support the subsequent modules of both training and classifica-
tion phases. We use the number of related flows to represent
the correlation strength between the attribute value and the
application. For instance, suppose we have two applications,
namely Alipay and Taobao. In the network traces of Alipay,
we find three flows start from Domain Name ’g.alicdn.com’
and five flows start from Domain Name ’entpsz.alipay.com’.
In the network traces of Taobao, we find three flows start
from Domain Name ’acs.m.taobao.com’ and five flows start
from Domain Name ’g.alicdn.com’. So we add the following
three correlation entries to the Domain Name - Application
correlation dictionary. (g.alicdn.com) : (Alipay : 3, Taobao : 5),

(entpsz.alipay.com) : (Alipay : 5, Taobao : 0),
(acs.m.taobao.com) : (Alipay : 0, Taobao : 3).

Once we obtain the attribute - application correlation dictionar-
ies, we can get the correlation strength between any attribute
value and the applications by querying the correlation dictio-
naries. When an attribute value does not exist in the dictionary,
we consider the correlation strength to be zero. Continuing
with the example above, the correlation strength between the
Domain Name ’sync.amap.com’ and the applications is

(sync.amap.com) : (Alipay : 0, Taobao : 0).

B. Attribute Vector Generator

The attribute vector generator intends to generate the
attribute vector for each encrypted flow according to the
specified attributes extracted by the preprocessor. For each
encrypted flow, the attribute vector generator first searches the
specified attributes of the flow in the dictionaries to obtain cor-
relation strength between those attributes and the applications.
Then, the attribute vector generator extracts Application
Data lengths of the encrypted flows and concatenates the
correlation strength with the Application Data lengths
to generate the attribute vectors of the encrypted flows. The op-
timal number of the Application Data lengths Rapp data

is introduced in Subsection IV-B2 and we suppose Rapp data

to be three here. Taking an encrypted flow as an example, if the
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correlation strength between its attributes and the applications
are Domain Name : (Alipay : 0, Taobao : 45),

Common Name : (Alipay : 2220, Taobao : 1955),
Organization : (Alipay : 90, Taobao : 904).

and the lengths of the first three Application Data
lengths of the encrypted flow are (272, 773, 0), the output
attribute vector will be [0, 45, 2220, 1955, 90, 904, 272, 773, 0].

C. Context Utilizer

The context utilizer takes the contextual flows, the latest
historical flows before the encrypted flows, into consideration.
When a user uses a mobile application, the flows generated
by this application client cluster in the timeline, that is, the
surrounding flows are very likely to be generated by the
same application client. Based on this observation, MAAF
can exploit the contextual encrypted flows to reconfirm the
classification results.

The process of contextual flow utilization is shown in
Figure 4, where we suppose the contextual reference range
Rcontext to be three and represent the mth dimension of
Flown’s attribute vector as Vn[m]. We name the output of the
context utilizer as multi-attribute associated vectors. The pro-
cess of determining the optimal range Rcontext is introduced in
Subsection IV-B3. For a given flow, when its contextual flows
are sufficient, we exploit the contextual information by directly
copying the attribute vectors of the contextual flows in the
reversed time order. When the encrypted flow lacks sufficient
contextual flows, we fill in the empty position by zero padding
to uniform the dimension of multi-attribute associated vectors.
For example, in Figure 4, the Flow3 takes the Flow1 and
Flow2 as its contextual flows while the Flow2 can only take
the Flow1 as its contextual flow.

D. Model Trainer and Classifier

We complete the vectorization of the encrypted traffic
features after obtaining the multi-attribute associated vectors
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of the encrypted flows. Next, we apply supervised machine
learning models to classify the multi-attribute associated vec-
tors to predict the original applications of the encrypted flows.
Considering the weak linear relationship between the specified
attributes, we select three non-linear supervised classification
models as classifier candidates, namely C4.5 [19], Random
Forest [20] and XGBoost [21].

These three machine learning models have their strengths.
We can choose the appropriate model according to the specific
performance requirement. The C4.5 is a landmark decision
tree model that takes the normalized information gain as
the splitting criterion. Due to the simplicity of the model,
the training and classification speed of C4.5 is much faster
than the other two models, which can be an advantage for
massive traffic processing. The Random Forest is an en-
semble machine learning model that constructs a multitude of
decision trees by randomly and repetitively sampling both the
training set and features. The sampling mechanism of Random
Forest makes it suitable for high-dimension vectors and can
correct the overfitting habit of the simple decision tree. The
XGBoost is an implementation of gradient boosting decision
tree designed for efficiency and flexibility. Gradient boosting
is an approach where new models are created to predict the
residuals or errors of prior models and then added together for
final prediction [22]. The XGBoost can adapt to various data
environments and perform high classification accuracy.

According to the comparative evaluation results in Subsec-
tion IV-B4, we find that XGBoost performs best among the
three classifier candidates. Consequently, we select XGBoost
as the classifier for the multi-attribute associated vectors to
achieve the optimal classification accuracy.

III. TRACESET COLLECTION

In this section, we first introduce two mobile network trace
collection schemes. Then, we provide an overview of our
experimental traceset of sixteen popular mobile applications.



TABLE II
THE STATISTIC OF 16 APPLICATION TRACESETS

Developer Application Manually Collected Traceset Automatically Collected Traceset
Flows Packets Domain Cert Both1 Flows Packets Domain Cert Both1

Alibaba
Alipay 5201 315234 16.4% 96.3% 97.3% 5929 113902 60.5% 91.4% 93.6%
Taobao2 3231 291348 93.9% 96.8% 99.4% 7766 201895 95.3% 96.9% 100.0%
AMap2 3624 114513 91.7% 98.8% 99.4% 6184 102874 96.7% 98.4% 99.9%

Baidu Baidu Search 4732 181971 52.5% 90.3% 94.3% 16263 252196 88.2% 97.5% 99.0%
Baidu Map2 5544 215920 40.0% 89.2% 93.8% 25155 663444 54.5% 99.5% 100.0%

Facebook Facebook 4148 526289 46.3% 82.2% 87.4% 2508 211225 17.8% 66.0% 69.6%
Instagram 4379 343809 27.0% 5.8% 31.8% 3844 307328 17.5% 42.1% 50.7%

Twitter Twitter 4463 167166 45.6% 89.7% 93.9% 3638 96616 7.7% 91.2% 92.6%
Sina Weibo 3817 127057 95.4% 95.2% 99.6% 3558 63036 99.6% 96.2% 100.0%
Airbnb Airbnb 5843 875837 76.0% 67.7% 82.2% 2329 35278 100.0% 87.8% 100.0%
Linkedin Linkedin 4203 160614 91.4% 91.8% 98.5% 4267 241124 88.2% 94.5% 99.9%
Evernote Evernote 7504 202557 98.4% 48.1% 98.5% 822 15036 99.6% 99.1% 99.9%
Blued Blued 4833 478467 73.4% 55.6% 73.8% 13741 306708 96.4% 95.9% 98.0%
Ele Ele 6740 99193 98.9% 98.5% 99.9% 8896 148151 98.9% 99.7% 100.0%
Github Github 4431 151355 98.6% 96.4% 98.8% 1327 50942 97.8% 94.0% 98.5%
Yirendai Yirendai 4585 61356 98.1% 97.5% 99.2% 6760 64451 97.5% 97.1% 100.0%

Total 77278 4312686 71.7% 79.9% 90.7% 113020 2875337 75.7% 94.4% 96.6%
1 Both indicates the percentage of flows starting from a domain name query or containing an X.509 certificate.
2 The applications marked in bold are added to study the ability to classify the same developer’s applications.

A. Collection Scheme

Before conducting the evaluation of MAAF, we need to
collect mobile application tracesets with ground-truth labels.
To the best of our knowledge, there are two schemes to
collect tracesets, namely the Active Traceset Collection and
the Passive Traceset Collection.

1) Active Traceset Collection: The architecture of this
scheme is shown in Figure 5 (a). In this scheme, we
collect mobile application tracesets by running applica-
tions on a manipulated Android phone and dump the mo-
bile application traces with corresponding labels on the
workstation. The Android phone is linked to the work-
station via an access point. When the Android phone is
running an application, the workstation can capture all
the traces generated by this application and label these
traces cause the running application is specified by the
operator. In general, we can generate mobile application
traces by adopting Monkeyrunner [23] to fuzz the
user interface (UI) of the applications [24], [25] or by
employing volunteers to manually operate the applica-
tions. Although Monkeyrunner can efficiently gener-
ate mobile application traces by random UI operations,
such as touching and dragging, these generated traces are
different from the real traces since the Monkeyrunner
are unable to interact with applications as the UI designs.
The manual mobile application trace generation takes
massive human efforts. However, these traces are exactly
the real mobile application traces, which guarantees the
reliability of the evaluation results.

2) Passive Traceset Collection: The architecture of this
scheme is showed in Figure 5 (b). In this scheme, we
first collect unlabeled mobile application traces through
a port mirroring supporting switch [17] that deployed
on the mobile network. In order to label the passive col-
lected mobile application traces, [12]–[15] select labeled
encrypted flows from these unlabeled traces by matching

the IP addresses resolved from the application-related
domain names. Taking Alipay as an example, we know
that ’*.alipay.com’ is an Alipay-related domain name
according to its Whois [26] record. Then, the Address
records [27], [28] of this domain name must be the IP
addresses of Alipay servers, which can be used to select
the encrypted flows of Alipay. However, this scheme
faces the problem that the accuracy of the traceset labels
will be reduced when several applications share the same
application-related domain names.

B. Traceset Introduction
In order to conduct precise experimental evaluations, we

collect two different tracesets of sixteen applications through
the active collection scheme. The first traceset is manually
generated by employing volunteers to operate these appli-
cations. The second traceset is automatically generated by
adopting Monkeyrunner to fuzz the UI of the applications.
We refer to the application list in [14] to conduct convincing
comparison evaluation with the state-of-the-art approaches.
The proportion of encrypted flows in the traces of Netease
Music is too small, so we remove it from the list. In addition,
we add three applications, namely Taobao, Amap, and Baidu
Map, to study the classification of the applications from the
same developer. During the trace collection of an application,
only this application and the necessary system applications are
installed on the Android phone. In the meanwhile, we deploy
a firewall to block the noisy traces from Android system
applications. The manual traces collection lasts two months
while the automatical trace collection only takes two weeks.

Table II presents the statistic of the two tracesets, including
the number of flows (Flows), the number of packets (Packets),
the percent of flows starting from a domain name query
(Domain), the percent of flows containing an X.509 certificate
(Cert) and the percent of flows starting from a domain name
query or containing an X.509 certificate (Both). The number
of the flows in the automatically collected traceset is uneven



because the Monkeyrunner has different adaptability to
different applications. According to the statistical results, about
25% - 30% of the encrypted flows are not correlated with any
domain name. This means a large number of flows will be
omitted by the Passive Traceset Collection scheme. Although
there are attribute-lacking flows neither start from a domain
query or contain a certificate, our context utilizer can address
this challenge and classify these flows correctly.

IV. EVALUATION OF MAAF

In this section, we conduct rigorous experiments to evaluate
the effectiveness of the key modules in MAAF and present the
evaluation results in Subsection IV-B.

A. Preliminary

1) Evaluation Schemes: In order to fully understand
MAAF, we design the following four comparison experiments
on the manually collected traceset to study the effectiveness
of MAAF’s key modules:

• Whether to employ Domain Name, Common Name or
Organization. This experiment studies the contribution
of each specified attribute and the collaboration between
the attributes. We traverse all combinations of the three
specified attributes and study the classification accuracy
for each combination. Based on the experimental results,
we can optimize the combination of the specified at-
tributes to suit the actual network scenario.

• Different quantities of Application Data lengths.
This experiment studies the classification accuracy under
different quantities of Application Data lengths.
Indeed, the Application Data carry communication
payloads, so we can make a trade-off of using fewer
Application Data lengths to make earlier predic-
tions. We traverse the quantity of Application Data
length from zero to nine.

• Different contextual reference ranges. This experiment
studies the classification accuracy under different contex-
tual reference ranges. The computational cost of MAAF
increases as the contextual reference range expands. We
can select the optimal contextual reference range by
measuring its marginal accuracy return. We traverse the
contextual reference range from zero to nine.

• Different machine learning models. This experiment s-
tudies the adaptability of different machine learning mod-
els to the multi-attribute associated vectors. We evaluate
the classification accuracy under three machine learning
models, i.e., C4.5, Random Forest, and XGBoost.

2) Flow Sequence Shuffle: Considering that the contextual
flows in the real-world mobile network may mingle with the
flows of other applications, we simulate the real-world flow
sequences by shuffling the flow sequences in the traceset. As
shown in Figure 9, for each application, we randomly choose
some traces in the traceset for the random insertion (In this
paper, we roughly choose 10% of the traceset) while keep the
relative order of the remaining flows. Then, we randomly insert
the selected flows in any position of the original sequence

APP 1 APP 2 APP 3

Original

Flow

Sequences

Randomly

Chosen

Flows

APP 1 APP 2 APP 3

APP 1 APP 2 APP 3

Shuffled

Flow

Sequence

Randomly 

Insert

Flow Sequence Shuffle

Fig. 9. The Process of Flow Sequence Shuffle

traffic with equal probabilities. Based on the flow sequence
shuffle, our experiment can reveal the classification accuracy
of MAAF in the real-world mobile network.

3) Cross-Validation: To evaluate the classification accuracy
of MAAF, we randomly split the manually collected traceset
into a training traceset and a validation traceset. In order to
mitigate the impact of traceset partition, we repeat the split
ten times and take the average of ten experimental results.
In each split, we randomly choose 80% of the flows as the
training traceset and take the remaining flows as the validation
traceset. For each traceset partition, we perform 5-fold cross-
validation on the training traceset to search the optimal hyper-
parameters of the classifier, like the max depth of the trees and
the number of the estimators. Considering the training time
of these models, we conduct 100, 50, 10 random searches
for C4.5, Random Forest, and XGBoost, respectively.
Then, we employ the optimal hyperparameters to evaluate the
classification accuracy on the validation traceset.

4) Criteria of Cross-Validation: We consider Precision
(Prec.), Recall (Rec.), Accuracy (Acc), and F1 Macro (F1)
as evaluation metrics. For the application Appi, we define the
Precision as the rate of the real encrypted flows belonging
to Appi in the encrypted flows classified as Appi and the
Recall as the rate of the encrypted flows correctly classified
as Appi in the total Appi encrypted flows. The F-score of
the application Appi is the harmonic average of Precision and
Recall. We define Accuracy as the overall rate of all correctly
classified encrypted flows in all encrypted flows and F1 Macro
as the macro average of all F-score to evaluate the overall
classification effectiveness of MAAF.
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B. Experimental Results of MAAF

1) Whether to Employ Domain Name, Common Name or
Organization: The effectiveness of the specified attributes is
reflected in Figure 6. Due to the limited space, we replace
the attribute names by numbers. We use A1, A2 and A3 to
represent Domain Name, Common Name, and Organization,
respectively, and use the combination of the numbers to
represent multiple attributes. For example, A12 denotes that
MAAF employs both Domain Name and Common Name.

According to the experimental results in Figure 6, we find
that the classification accuracy of MAAF improves with the
enrichment of the attributes, which conforms to the ordinary
intuition that the classification accuracy improves with the
cumulation of valid information. Furthermore, MAAF per-
forms well when only one attribute is employed, which may
be attributed to the Application Data lengths and the
contextual flows. We also notice that the Domain Name and
the Common Name can be harmoniously combined to improve
the accuracy significantly.

2) Different Quantities of Application Data Lengths:
Figure 7 shows the upward trend of the classification accuracy
with the increase of the quantities of Application Data
lengths Rapp data. The introduction of Application Data
lengths greatly improves the classification accuracy under all
machine learning models. With the subsequent addition of the
Application Data lengths, the classification accuracy of
Random Forest and XGBoost grows slowly, while the
classification accuracy of C4.5 is slightly reduced. Indeed, the
Application Data carry the communication payloads.
The fewer Application Data lengths are used, the sooner
MAAF can predict the applications of the encrypted flows.
According to the experimental results, we set the quantity of
Application Data lengths Rapp data to three to make a
balance between the accuracy and the early prediction.

3) Different Contextual Reference Ranges: In Figure 8,
with the increase of the contextual reference range
Rcontext, the classification accuracy of Random Forest and
XGBoost grows steadily, while the classification accuracy of
C4.5 declines slowly. The dimension of the multi-attribute
associated vector linearly expands with the increase of con-
textual reference range. However, C4.5 is a simple decision
tree method whose ability to select essential features in high-

TABLE III
EXPERIMENTAL RESULTS UNDER DIFFERENT CLASSIFIERS

Application C4.5 Random Forest XGBoost
Prec. Rec. Prec. Rec. Prec. Rec.

Alipay 0.9630 0.9775 0.9815 0.9898 0.9859 0.9915
Taobao 0.9293 0.9218 0.9605 0.9623 0.9671 0.9696
Amap 0.9658 0.9304 0.9816 0.9714 0.9830 0.9767
Baidu Search 0.8857 0.8579 0.9618 0.9191 0.9742 0.9441
Baidu Map 0.8807 0.9181 0.9340 0.9717 0.9517 0.9817
Facebook 0.9685 0.9647 0.9870 0.9815 0.9891 0.9891
Instagram 0.9703 0.9709 0.9873 0.9835 0.9922 0.9888
Twitter 0.9761 0.9764 0.9913 0.9894 0.9903 0.9900
Weibo 0.9840 0.9781 0.9950 0.9920 0.9959 0.9907
Airbnb 0.9668 0.9696 0.9784 0.9866 0.9816 0.9905
Linkedin 0.9904 0.9862 0.9955 0.9975 0.9973 0.9970
Evernote 0.9947 0.9953 0.9978 0.9976 0.9974 0.9970
Blued 0.9759 0.9818 0.9919 0.9901 0.9938 0.9910
Ele 0.9839 0.9847 0.9936 0.9910 0.9951 0.9897
Github 0.9931 0.9916 0.9953 0.9966 0.9962 0.9964
Yirendai 0.9865 0.9872 0.9946 0.9957 0.9958 0.9954

Acc/F1 0.9642 0.9627 0.9832 0.9825 0.9869 0.9864

dimension vectors is weaker than the other two models. As a
result, it makes sense that the classification accuracy of C4.5
declines with the increase of the contextual reference range.
Based on the experimental results, we conclude that MAAF is
computationally cost-efficient when the contextual reference
range Rcontext takes around eight.

4) Different Machine Learning Models: The experimental
results of different machine learning models are presented in
Table III. We notice that XGBoost performs best among the
three models in terms of Accuracy and F1 Macro. The over-
all performance of Random Forest is better than C4.5.
For the applications from the same developer, such as Ali-
pay/Taobao/Amap, XGBoost performs best in both Precision
and Recall. For the applications from different developers,
Random Forest performs better in Recall. This may be
caused by the different feature preferences of XGBoost and
Random Forest for high-dimension vectors.

V. COMPARISONS WITH EXISTING APPROACHES

In this section, we compare MAAF with three state-of-the-
art approaches in terms of classification accuracy, robustness
to the traceset scale, robustness to different tracesets and
computational complexity.

A. Preliminary

1) Existing Approaches: (1) SOB [14] integrates the
second-order message type Markov chain with bi-gram clus-



tering to classify the encrypted flows. We set the number of bi-
gram clustering to 40. (2) MaMPF [15] takes the message type
Markov chain and Length Block Markov chain as features and
classifies the joint feature vector using Random forest. We
set Length Block to cover 90% of the whole packets and search
the optimal parameters on the training traceset before the
validation. (3) FS-Net [16] uses an encoder-decoder structure
to generate features and directly classifies the feature vectors
by a full-connected neural network. We implement FS-Net
using TensorFlow and set the same parameters as the paper.

2) Setting of MAAF: Based on the evaluation results in
Section IV-B, we employ all three specified attributes, set the
quantities of Application Data lengths to three, set the
contextual reference range to eight, and take XGBoost as
the machine learning model. We use the training traceset to
perform ten random hyperparameter searches and then use the
optimal hyperparameters to achieve ideal accuracy of MAAF.

3) Experimental Setting:
• Comparisons of Classification Accuracy: We compare

MAAF to the state-of-the-art approaches in terms of the
classification accuracy on the manually collected traceset.

• Comparisons of Robustness to the Scale of Training
Traceset: We compare the classification accuracy of these
four approaches when taking 20%, 40%, 60%, 80% of the
manually collected traceset as the training traceset and the
remaining part as the validation traceset.

• Comparisons of Robustness to Different Tracesets: We
compare the classification accuracy of the four approach-
es when training on the automatically collected traceset
and validating on the manually collected traceset. We cut
the training traceset to balance the size of the tracesets.

• Evaluation of Computational Complexity: We deduce
and demonstrate the theoretic computational complexity
of the preprocessing and classification to compare the
throughput of these four approaches.

B. Comparisons of Classification Accuracy

The preprocessing of the traceset used in this comparison
experiments are the same as Subsection IV-A. Table IV
presents the experimental results of different approaches.
Compared with the state-of-the-art methods, MAAF performs
best in both Accuracy and F1 Macro. The F1 Macro of
MAAF is 3.27%, 14.94%, and 23.45% better than FS-Net,
MaMPF, and SOB, respectively. In particular, for the applica-
tions from the same developer, such as the Baidu Search/Baidu
Map from Baidu, MAAF is 9.45%/5.11% better on the Pre-
cision, 6.32%/6.66% better on the Recall compared with FS-
Net. Compared with MaMPF, MAAF is 15.37%/10.90% better
on the Precision, 39.26%/38.07% better on the Recall for the
Baidu Search/Baidu Map. The applications from the same
developer is a difficult case to deal with. However, MAAF
handles this special case correctly and performs better than
the state-of-the-art approaches.

In order to have an intuitive observation of the experimental
results, we draw the confusion matrices of the four approaches
in Figure 10. SOB and MaMPF misclassify many applications

TABLE IV
EXPERIMENTAL RESULTS OF DIFFERENT APPROACHES

Application SOB MaMPF FS-Net MAAF
Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

Alipay 0.7196 0.8062 0.8209 0.9449 0.9707 0.9650 0.9859 0.9915
Taobao 0.5221 0.6078 0.4739 0.8183 0.8727 0.8718 0.9671 0.9696
Amap 0.6910 0.7374 0.9321 0.9040 0.9502 0.9484 0.9830 0.9767
Baidu Search 0.6502 0.4556 0.8205 0.5515 0.8797 0.8809 0.9742 0.9441
Baidu Map 0.6505 0.7278 0.8427 0.6010 0.9006 0.9151 0.9517 0.9817
Facebook 0.8319 0.7992 0.8571 0.8205 0.9706 0.9623 0.9891 0.9891
Instagram 0.9127 0.8445 0.9272 0.8825 0.9819 0.9737 0.9922 0.9888
Twitter 0.8728 0.9159 0.9703 0.9005 0.9792 0.9729 0.9903 0.9900
Weibo 0.7807 0.8598 0.7565 0.9020 0.9532 0.9459 0.9959 0.9907
Airbnb 0.7115 0.5883 0.6598 0.9420 0.9536 0.9646 0.9816 0.9905
Linkedin 0.6423 0.7575 0.9719 0.7144 0.9648 0.9691 0.9973 0.9970
Evernote 0.9124 0.8722 0.9486 0.9782 0.9750 0.9971 0.9974 0.9970
Blued 0.7402 0.8883 0.8508 0.9415 0.9852 0.9645 0.9938 0.9910
Ele 0.9386 0.8298 0.9569 0.8789 0.9753 0.9606 0.9951 0.9897
Github 0.7801 0.7925 0.9782 0.7972 0.9871 0.9832 0.9962 0.9964
Yirendai 0.7464 0.5949 0.9780 0.8043 0.9683 0.9767 0.9958 0.9954

Acc/F1 0.7601 0.7519 0.8422 0.8370 0.9561 0.9537 0.9869 0.9864
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Fig. 10. Confusion Matrix of Different Approaches

from the same developer, such as Baidu Search/Baidu Map
from Baidu and Facebook/Instagram from Facebook. FS-Net
significantly ameliorates the misclassification problem except
for the Baidu Search and Baidu Map. MAAF further improves
the classification accuracy of these applications, and only few
Baidu Search and Baidu Map flows are misclassified.

C. Comparisons of Robustness to the Traceset Scale

Figure 11 presents the classification accuracy of MAAF
and three state-of-the-art approaches in different scales of
training traceset. As the scale of the training traceset increases,
the classification accuracy of SOB and MaMPF increases
a lot, which reflects their dependence on the large scale
training traceset. FS-Net greatly ameliorates the problem of
dependence on the large scale training traceset. MAAF shows
strong robustness to the scale of training traceset. We can
find that MAAF achieves ideal classification accuracy when
it is trained with only 20% of the traceset. According to
the experimental results, MAAF shows strong tolerance to
the shortage of training traceset, which greatly reduces the
difficulty of the traceset collection tasks.
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Fig. 11. Classification Accuracy in Different Scale of Training Traceset

D. Comparisons of Robustness to Different Tracesets

Table V presents the experimental results of different ap-
proaches when training on the automatically collected traceset
and validating on the manually collected traceset. All the state-
of-the-art approaches show a great decline on the accuracy
and F1 Macro compared with Table IV, which is attributed to
the different message type features or different packet length
features of the two trecesets. However, the attributes adopted
by MAAF are independent of the traceset source, so MAAF
still performs well for most of the applications.

E. Evaluation of Computational Complexity

Table VI presents the computational complexity of different
approaches. We divide the classification task into preprocess-
ing and prediction. The preprocessing extracts the features
from the raw traffic. The prediction handles the features
and makes the prediction. We denote the number of the
applications, the average number of flows in the application,
the average number of messages in the flow, and the average
number of packets in the flow as n, f , m, and p, respectively.
We deduce the computational complexity as follows:

• SOB traverses all the flows to extract the message type
sequences and bi-grams in the preprocessing, so the
preprocessing complexity of SOB is O(nfp). Consid-
ering that SOB calculates the classification probabilities
through n second-order Markov chains, the prediction
complexity of SOB is O(n2fm).

• MaMPF transfers packet lengths to Length Block and cal-
culates the probability features of both message type and
length block in the preprocessing, which takes O(n2fp)
computational complexity. In the prediction, MaMPF
uses Random Forest to classify these probability fea-
tures. The complexity of Random Forest is O(nfkd),
where k means the number of trees in the forest and d
means the max-depth of these trees.

• The preprocessing of FS-Net traverses all the flows to
extracts the packet lengths, which takes O(nfp) compu-
tational complexity. The FS-Net contains an encoder, a
decoder, and a full-connected neural network. Both the
encoder and decoder are constructed of recurrent neural
networks. We deduce the prediction complexity of FS-
Net to be O((dpl + hpl + n) ∗ nfh), where d means
the embedding dimension of packet length, h means the

TABLE V
EXPERIMENTAL RESULTS USING DIFFERENT TRACESETS

Application SOB MaMPF FS-Net MAAF
Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

Alipay 0.0767 0.6878 0.3733 0.1797 0.7029 0.7074 0.6972 0.9839
Taobao 0.0555 0.0217 0.2896 0.0544 0.1149 0.2132 0.9230 0.8157
Amap 0.0270 0.0013 0.4227 0.3201 0.5599 0.3325 0.9114 0.9594
Baidu Search 0.5762 0.0837 0.1093 0.0798 0.3179 0.2605 0.7179 0.8049
Baidu Map 0.7291 0.0879 0.2684 0.1933 0.4925 0.4890 0.8712 0.9239
Facebook 0.7560 0.5836 0.2514 0.5873 0.5735 0.6762 0.8866 0.9482
Instagram 0.5867 0.8668 0.6346 0.6839 0.6430 0.8879 0.7362 0.9594
Twitter 0.0179 0.0002 0.2857 0.3640 0.4080 0.8739 0.8424 0.9297
Weibo 0.1318 0.0095 0.0831 0.0165 0.1433 0.0451 0.9935 0.9768
Airbnb 0.4784 0.0219 0.9398 0.2013 0.7754 0.3729 0.9986 0.6734
Linkedin 0.4226 0.0690 0.1113 0.5670 0.6553 0.6315 0.8118 0.9900
Evernote 0.2194 0.0413 0.8468 0.0985 0.9738 0.3315 0.9991 0.6960
Blued 0.5342 0.6607 0.0486 0.1129 0.5993 0.6496 0.9149 0.9095
Ele 0.2896 0.0043 0.0924 0.0401 0.5647 0.2246 0.9779 0.9813
Github 0.5371 0.3847 0.7389 0.6866 0.3246 0.9549 0.9212 0.9956
Yirendai 0.2692 0.0053 0.0887 0.0255 0.1703 0.0910 0.9980 0.5685

Acc/F1 0.2291 0.1962 0.2473 0.2465 0.4775 0.4518 0.8737 0.8738

TABLE VI
THE COMPUTATIONAL COMPLEXITY OF DIFFERENT APPROACHES

Approach Preprocessing Prediction
SOB O(nfp) O(n2fm)
MaMPF O(n2fp) O(nfkd)
FS-Net O(nfp) O((dpl + hpl + n) ∗ nfh)
MAAF O(nf) O(nfkd)

hidden dimension of recurrent neural networks, and l
means the number of recurrent neural network layers.

• MAAF extracts the attributes of the flows without the
processing of the payload packets, which only need
O(nf) computational complexity. The complexity of
the attribute vector generator and context utilizer are
also O(nf). MAAF employs XGBoost as the classifier,
whose complexity is the same as Random Forest.

For the preprocessing and prediction, we have the relations,
O(nf) < O(nfp) < O(n2fp), and O(n2fm) < O(nfkd) <
O((dpl + hpl + n) ∗ nfh). The computational complexity
of MAAF is definitely lower than MaMPF and FS-Net, but
slightly higher than SOB.

VI. DISCUSSION AND CONCLUSION

In this paper, we propose an efficient encrypted traffic
classification system Multi-Attribute Associated Fingerprints
(MAAF), which makes use of multiple attributes and the
contextual flows. The experimental results demonstrate the
effectiveness of the attributes and context employed by MAAF
and reveal that MAAF performs better than the three state-of-
the-art approaches on a real-world traceset. In future work,
we plan to study other attributes to improve the classification
accuracy of MAAF when applied to different tracesets.
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