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Abstract—Application aware data centers promise various
benefits for data center management, in terms of resource
provisioning, power estimation, network management, security
protection, etc. However, the emerging microservices make it
challenging for data center operators to accurately identify what
applications are deployed by tenants, due to their highly dynamic
and heterogeneous nature. In this paper, we address the problem
of fingerprinting microservices in a unified, efficient, accurate
and non-intrusive fashion. To this end, we characterize the run-
time behaviors of microservices using eBPF-based lightweight
system call tracing. To accurately fingerprint a diverse set of
microservices based on their system call activities, we utilize the
machine learning approach which combines Bayesian learning
and LSTM autoencoders. We demonstrate that our approach can
fingerprint many real-world microservices with 99% accuracy,
using 1–2% additional CPU resource, and can detect the presence
of previously unseen microservices with near perfect accuracy.

I. INTRODUCTION

Modern cloud-based enterprise applications [1], [2] and
emerging web-scale service architectures [3]–[6] are increas-
ingly realized using microservices due to their intrinsic benefits
such as high developer productivity, deployment agility, im-
proved scalability, flexibility and resiliency [7]. Faced with the
increasingly microservice-dominated workloads, today’s data
center infrastructures are evolving to accommodate large num-
bers of dynamically created microservices (e.g., Kubernetes,
Mesos).

Another trend in today’s data center management is the
growing application awareness in the data center infrastruc-
ture. Traditionally, data center management has remained
mostly application agnostic, focusing on maintaining the
health of the data center without knowing what applications
are deployed by tenants. However, application awareness plays
an increasingly important role in different aspects of data
center operations as follows.

Resource provisioning. Server consolidation in data cen-
ters often results in performance interference among co-
located applications, caused by incompatible resource usage
patterns (e.g., CPU-bound vs. I/O-bound, interactive vs. batch-
oriented) [8]. If the data center is application-aware, it can help
with consolidating servers with compatible workloads, and
forecasting long term growth in hardware resource demand.
Power modeling. Accurate power modeling is important for
energy-efficient data center operations. However, the increas-
ing heterogeneity of data center applications makes accurate

power modeling and estimation challenging. Compared to
application-oblivious usage based power models, application-
dependent model calibration is shown to be promising [9].
Network management. Next-generation network manage-
ment and monitoring products provide application-level traffic
engineering, QoS and reporting capabilities based on applica-
tion identification [10], [11]. Also, exporting application-level
knowledge to the network is shown to be useful to improve
application’s networking performance [12], and to predict
networking behaviors (e.g., elephant flow detection [13]).
Security management. Application awareness is particularly
important in data center security. Application-level knowledge
can for example be utilized to generate risk assessment reports
tailored for deployed tenant applications [14], or to automat-
ically generate security policies in dynamic DevOps envi-
ronments [15] or relevant application signatures in intrusion
detection systems [16].

While benefits of application awareness can be realized
in different contexts as described above, it is challenging to
identify applications reliably and scalably, especially in the
presence of the emerging microservices. The microservice
ecosystem of modern data centers is extremely heterogeneous,
with a mix of open-source software (e.g., Nginx, Redis),
custom-built services [17], and proprietary applications. A
straightforward approach to fingerprint such diverse sets of
microservices is to investigate individual microservices in
search for application-specific hints (e.g., executable names,
port numbers, config files, container image metadata). Such
an application-specific approach is not reliable or complete
as those hints are not binding properties of microservices
(i.e., can be easily tweaked or hidden), and does not scale
with the growing microservice ecosystem. On the other hand,
deep packet inspection based application identification (e.g.,
OpenAppId [18]) is not only computationally inefficient, but
also incomplete (e.g., unable to identify CPU or I/O bound
non-networking microservices). For practical deployment, any
proposed solution needs to be able to identify highly dynamic
microservices in a timely fashion with minimal overhead.
In terms of accuracy, none of these approaches can provide
implementation-level fingerprinting capabilities. For example,
MySQL, MariaDB and Percona, which are binary-compatible
database implementations, may be exposed to distinct secu-
rity vulnerabilities, and the ability to correctly detect and
differentiate them can provide proper security protection for978-1-7281-2700-2/19/$31.00 2019 © IEEE



those tenants who deploy them. Finally, increasingly rigorous
tenant privacy standards, which prohibit any kind of intrusive
profiling or instrumentation of tenant-owned microservices,
add to the difficulty in accurate fingerprinting.

Faced with these challenges, we address in this paper the
problem of fingerprinting microservices in a unified, efficient,
non-intrusive, and accurate fashion. To this end, we set out
to characterize the run-time behaviors of microservices in an
application agnostic fashion. The most generic way to monitor
the behavior of a microservice is to examine the system calls
issued by the microservice while it interacts with the host
operating system (e.g. to access file systems and networks,
synchronize threads, etc.). The predominant container-based
(e.g., Docker, LXC) microservice deployments enable the
monitoring of system calls within the end server’s operating
system without profiling the microservices themselves. Not
only application-agnostic, but also transparent to the microser-
vices, system call level tracing meets the unified and non-
intrusive monitoring requirements. For efficient monitoring of
such low-level system activities, we turn to the modern kernel
tracing technology called the Extended Berkeley Packet Filter
(eBPF) [19], which enables flexible tracing of server-wide
system calls at marginal CPU overhead.

To achieve accurate fingerprinting, we design a supervised
Bayesian learning model called a fingerprint model that clas-
sifies the sequences of system calls generated by deployed
microservices to derive their identities. In this model, we
characterize the sequence of system calls as a Markov chain
of order-k, where the order-k transition probability captures
the history in a sequence for finer classification. To cope with
the model’s increasing resource demand from a large number
of classification categories, which is common in real world
environments, we apply the Bayesian-based fingerprinting in
a hierarchical fashion.

Still, the drawback of the Bayesian-based fingerprint model
is that it can only fingerprint known classes of microservices,
against which the model is already trained. When a previ-
ously unseen class of new microservices (i.e., outliers) are
encountered, the model blindly categorizes them into one of
known classes with the highest probability, which is obviously
incorrect. In real-world data centers, where the universe of
microservices is rarely predefined, but constantly evolves with
new types of microservices added, the accuracy of Bayesian-
based fingerprinting will be significantly degraded by outliers.
To address this limitation, we supplement the fingerprint model
with deep-learning-based outlier detection that can reliably
detect whether or not a given system call sequence is generated
by an outlier. The outlier detection is realized with a self-
supervised LSTM autoencoder which learns the representative
system call sequences generated by known microservices.
When fed with a system call sequence from a previously
unseen type of microservice, the autoencoder produces a high
reconstruction loss, from which we can reliably tell that the
sequence is not suitable for classification by the fingerprint
model. In this case, we re-train the fingerprint model as well
as the autoencoder to incorporate the newly found outlier.

We implement a working prototype consisting of eBPF-
based system call tracing, fingerprinting and outlier detection
modules, and test the prototype against various real-world
microservices. We show that we can differentiate among 30
different types of microservices of mixed similarity using
less than 1K system calls with 99% accuracy. In general, a
higher-order Bayesian model achieves similar accuracy with
shorter system call sequences. For typical microservice de-
ployments, we show that fingerprinting requires only marginal
CPU overhead (1–2%) for eBPF-based system call tracing.
Finally, we demonstrate that the autoencoder model can detect
outliers near perfectly with no false-positive/false-negative
error, except when outliers are highly similar to inliers (e.g.,
binary compatible implementations).

II. MACHINE LEARNING MODELS FOR MICROSERVICE
CLASSIFICATION

A. Bayesian Model for Microservice Fingerprinting

In the following, we present the supervised Bayesian model
for fingerprinting microservices. A microservice usually runs
as a stand-alone process or inside a container. We refer to the
execution of a microservice in either form as a microservice
engine. Each microservice engine invokes a stream of system
calls, which we call verbs. Let V denote the universe of verbs
and E = {E1, E2, . . . En} denote the set of engines. For the
purpose of modeling, we assume these verbs to form a random
process. Let V j

1 , V
j
2 , . . . represent the ordered sequence of

verbs invoked when engine Ej is executed. The ith verb
invoked when engine Ej is executed is denoted by the random
variable V j

i which takes on values from the set V. The goal of
the model is to characterize the underlying probabilities of this
random process so that each engine’s unique characteristics
(i.e., fingerprint) can be expressed through the probabilities.

1) Estimating Verb Probabilities: We generate training data
from each engine by executing the engine and collecting the
sequence of verbs invoked by the engine, which we call the
training sequence. Each engine has one training sequence.
Assume that we have a training sequence of length nj verbs
from engine Ej . Let T j = (T j(0), T j(1), . . . T j(nj)) where
T j(t) ∈ V denotes the tth verb invoked by engine Ej . We
use v = (v0, v1, . . . , vk−1) where vi ∈ V , to represent k
dimensional vector of verbs. We say that v is at location t for
engine Ej if T j(t) = v0, T

j(t−1) = v1, . . . , T
j(n−k) = vk.

We use Vk to denote the set of all combination of verbs of
length k. Therefore there are |V|k vectors in Vk. We define
an indicator variable Ij(t,v) which is set to one if and only
if T j(t − i) = vi ∀ 0 ≤ i ≤ k. In other words, Ij(t,v) is
set to one if the sequence v is at location t for engine Ej .
If we want to estimate the probability that sequence v ∈ Vk

occurs when engine Ej is invoked, we can use the standard
frequency definition of probabilities to say

pj(v) =

∑nj

t=k I
j(t)

nj
.



2) Estimating Conditional Probabilities: We are interested
in computing pj(v|v) which is the probability that a verb v ∈
V occurs immediately after the occurrence of the sequence of
verbs v in the invocation of engine Ej . We use the training
sequence data to estimate this conditional probability.

Dependency order. Depending on the model that we use,
we restrict the length of the conditioning sequence. For the
order-0 model we assume that verb invocation for engine Ej

is a sequence of independent calls. In this case, there is no
conditioning and we just want to estimate pj(v) which is the
probability that verb v ∈ V is invoked by engine Ej . More
generally we can define an order-k model where the current
verb depends on the last k verbs. In this case, we want to
compute the conditional probability pj(v|v) where v ∈ Vk.
There are |V|k conditioning vectors.

The conditional probabilities pj(v|v) can be computed
using a simple, frequency based interpretation of probability.
However, this will result in assigning a probability of zero
for all sequences that are not seen in the training sequence,
which is a problem especially for higher order dependency
models. To avoid this issue, we use a Bayesian model with
Dirichlet prior (see Appendix for detail). Once we compute
the conditional probabilities pj(v|v) for all engines Ej in E
from their training sequences, we consider a sequence of verbs
called the test sequence that are invoked from some unknown
engine. We now use these conditional probabilities to estimate
the probability that this test sequence is from engine Ej .

3) Estimating the Engine Probabilities: We observe a test
sequence of verbs v = (v1, v2, . . . , vm). Our objective is to
determine the probability that this sequence is generated by the
engine Ej . We use the notation v[i : j] to represent the test
sub-sequence (vi, vi−1, . . . , vj). We use a Bayesian approach
to determining this probability. We denote the probability that
the engine is Ej given that we are observing a test sequence
v by P [Ej |v]. We use Bayes theorem to write

P [Ej |v] =
P [v|Ej ]P [Ej ]

P [v]
.

If we do not have any prior information about the engines,
we assume that P [Ej ] = 1

n (where n is the number of
engines learnt by the supervised learning) for all engines Ej .
Therefore, P [Ej |v] ∝ P [v|Ej ].

Since we typically use order-k models for small k, we
ignore the k terms before the product and write for order-k,

P [v|Ej ] ≈
m∏
i=k

pj(vi|v[i− 1 : i− k]).

We are interested in picking the engine J with the highest
probability, i.e.,

J = argmax
j

P [v|Ej ] = argmax
j

log (P [v|Ej ])

where we used the fact that log() is an increasing function.
This in turn means that

J = argmax
j

log (P [v|Ej ]) =

m∑
i=k

pj(vi|v[i− 1 : i− k])

4) Extending to Hierarchical Fingerprinting: The com-
putation overhead of fingerprinting with the aforementioned
Bayesian model grows linearly with the cardinality of the
microservice universe E = {E1, E2, . . . En}. This can be
problematic for real-time fingerprinting as |E| can be high in
reality. Besides, if a higher-order Bayesian model is desired,
computing the order-k conditional probability matrices across
all known Ej will result in exponentially long training time,
as well as significant memory footprint for the matrices. To
address this potential scalability issue, we apply Bayesian-
based fingerprinting in a hierarchical fashion. That is, we
first cluster all engines Ej in E into N groups. Different
clustering methods are possible [20]. In this case, we define the
distance between two engines using the Frobenius distance be-
tween their respective order-1 conditional probability matrices,
and perform agglomerative clustering based on the distance
metric. Once microservice groups are so defined, we apply
fingerprinting in two steps; group-level classification, followed
by microservice-level classification within a chosen group. In
order to perform group-level classification (i.e., identify which
group a test sequence belongs to), we combine the training
sequences from all Ej in each group, and train a group-
level Bayesian model with the aggregate per-group training
sequences. This hierarchical approach scales better with the
size of E , and allows us to limit resource-expensive higher-
order Bayesian fingerprinting to particular groups only.

B. Autoencoder Model for Outlier Detection

The Bayesian-learning-based fingerprint model presented
before is designed under the assumption that the types of
available microservice engines are known a-priori or under
the tight control of data center operators (e.g., in telecom data
centers). However, in typical multi-tenant public clouds, where
the universe of microservice engines constantly evolves with
new types of microservices introduced by different tenants,
the fingerprint model alone is not sufficient, as it cannot detect
“none-of-the-above” types of microservices that the fingerprint
model is not trained against.

To solve this so-called outlier detection problem, we turn to
the deep learning based autoencoder approach, which has been
successfully adopted for anomaly detection [21], [22]. During
training, autoencoder learns to capture representative features
of normal training data into fixed-length feature vectors, which
it then uses to reconstruct the original training data. During
testing, if the trained autoencoder is fed with abnormal data not
seen during training, it yields a relatively high reconstruction
loss, from which the abnormality of the test data is detected.

Following this approach, we build a Long Short-Term Mem-
ory (LSTM)-based autoencoder for each engine Ej , which
learns the representative sequences of verbs generated by the
engine. We denote an LSTM autoencoder trained for engine
Ej as AEj . Let’s consider that the reconstruction loss ` yielded
by AEj against test sequences of engine Ei forms a random
variable Li

j . Then one can expect that for any engine j ∈ E , the
probability distribution of Li

j (i 6= j) is shifted to the right of
Lj
j’s distribution. For example, Fig. 1 shows the probability
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Fig. 1: Loss distributions from MySQL’s autoencoder model.

distributions of Li
j for three real-world microservices (j =

MySQL, i = MySQL, WordPress, HAProxy). Intuitively, when
a test sequence from a microservice under consideration is
evaluated against the engines Ej in E using their respective
AEj , if none of AEj in E yields a reconstruction loss that
falls within the confidence interval of Lj

j , it is likely that the
test sequence does not come from any of the engines in E .
Following this intuition, we use the procedure in Algorithm 1
for detecting an outlier. The loss threshold L̂ needs to be
carefully chosen such that the procedure minimizes both false-
positive and false-negative detection errors (see Section IV-C
for more details). While this procedure can be invoked against
the entire universe of microservice at once (i.e., G = E), it is
more scalable to apply the procedure to a subset of engines
in a hierarchical fashion, similar to the fingerprint model.

Algorithm 1 Procedure for detecting an outlier.

1: procedure DETECT OUTLIER(T , G, L̂)
input: T , /∗ test sequence(s) ∗/

G, /∗ group of engines to test against ∗/
L̂ /∗ reconstruction loss threshold ∗/

output: TRUE or FALSE
2: min loss← MAX LOSS
3: /∗ find the minimum reconstruction loss in G ∗/
4: for each Ei in G do
5: loss← evaluate model(AEi, T )
6: if min loss > loss then
7: min loss← loss
8: end if
9: end for

10: if min loss > L̂ then
11: return TRUE /∗ T is generated by outlier ∗/
12: else
13: return FALSE /∗ T is generated by an engine in G ∗/
14: end if
15: end procedure

III. IMPLEMENTATION

We implement a fully functional prototype of the proposed
architecture. The functional diagram of the prototype is pre-
sented in Fig. 2. The two main components of the prototype are
(i) the system call monitor and (ii) the microservice classifier,
each of which we describe respectively in the following.

A. System Call Monitor

The system call based microservice fingerprinting is predi-
cated on efficient system call tracing for practical deployment.
The traditional way (e.g., strace) of tracing system calls
using the ptrace system call introduces prohibitively high
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Fig. 2: Microservice classification prototype.

overhead as the process being traced is paused twice for each
system call invocation. For example, we found that when
simple disk I/O workload is traced with ptrace, it results in
200× slowdown in disk I/O rate and 180× more CPU usage
compared to the baseline without monitoring. To implement
system call monitoring with minimum resource overhead and
without intrusive instrumentation, we utilize the in-kernel vir-
tual machine technology called eBPF [19]. Without any kernel
customization, eBPF allows user-defined byte code (known as
eBPF programs) to be dynamically attached to various kernel
hooks to monitor any interesting kernel events. It also provides
in-kernel key-value maps for stateful processing and various
helper functions for specialized tasks. Modern eBPF toolchains
such as bcc [23] support just-in-time compilation to allow
eBPF programs to run at native speed in the kernel.

For our purpose, we extend the eBPF-based system call
tracer called vltrace [24]. The monitoring procedure of the
original vltrace is more heavyweight than necessary. For
example, the tool captures both entry and exit of each call,
and reports system call arguments as well. More importantly,
vltrace does not offer any run-time flexibility, and its tracing
behavior remains fixed once the eBPF program is compiled
and loaded into the kernel.1 This inflexibility makes it unsuit-
able if we want to dynamically enable/disable tracing on a per-
microservice basis to minimize tracing overhead. We address
these limitations as follows. We simplify the eBPF tracer to
record only system call ID and timestamp at the entry of each
call, but also extend it to collect system call-specific contexts
(e.g., type of file descriptors for open, read, write, etc.) for
more fine-grained system call monitoring. We dynamically
turn on/off tracing for different PIDs without reloading the
eBPF tracer itself, but simply by writing to an in-kernel eBPF
map (called PID table) accessed by the tracer. When a new
microservice is launched, the userspace collector daemon is
notified of its main PID by Docker runtime. It then records
the PID as well as all the PIDs in its process tree in the PID
table, so that the eBPF tracer starts tracing them. When the
collector accumulates enough tracing data for a particular PID,
it marks the PID off from the PID table to stop tracing it.

1Reloading the vltrace’s eBPF byte code running in the kernel for any
update takes more than 30 seconds as the byte code needs to be detached
from and re-attached to several hundreds of individual system call hooks.
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B. Microservice Classifier

Microservice classifier consists of (i) the central database
which stores system call sequences collected from the system
call monitor, (ii) the outlier detection module which performs
outlier detection with newly added sequence data, and (iii)
the fingerprint module which performs fingerprinting based
on only those sequence data not originating from outliers.

Fingerprint module. The fingerprint module, which imple-
ments the supervised Bayesian learning model, operates in two
modes: training and testing. In the training mode, the module
is fed with training sequences as well as the true identification
of the underlying microservice engines responsible for the
sequences. Recall that in an order-k Bayesian model, k+1 con-
secutive verbs are checked, and a transition from v0, v1, . . . , vk
to vk+1 is assumed to happen. During training, the module
examines the input sequence in groups of k, advancing by 1
for the next group, and builds the transition matrices with
order k = 0, 1, . . . , L (L is a system parameter) for the
given microservice. If the microservice is already learnt, and
therefore such matrices exist, the module augments them with
the newly learnt sequence. In order to achieve this efficiently,
we keep the raw occurrence counts of the transitions in the
matrices and normalize them (i.e., so that row sum is 1) only
during testing mode. Note that the matrices are initialized with
Dirichlet prior (1 in each cell of the matrices) so that there is
always a non-zero probability of a transition.

In the testing mode, a test sequence is fed to the module.
The probability of the sequence is computed using the matrix
of order-k for each of the trained microservices. This gener-
ates an order-k probability distribution for the test sequence
to belong to a particular trained microservice. The module
selects the highest probability and declares the sequence to
belong to the corresponding microservice. For example, Fig. 3
shows how the probability distributions among three example
microservices change with increasing test sequence length. If a
microservice is classified successfully, the probability for that
microservice quickly converges to one as shown in the figure.

Outlier detection module. The outlier detection module
is realized as a set of LSTM autoencoders AEj , trained
for each Ej in E . Each LSTM autoencoder implements a
sequence-to-sequence autoencoder [25], which reconstructs
the original input sequence as output. Before being fed into
the autoencoder, the input sequence is first converted into a
sequence of one-hot encoded vectors. The autoencoder then
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Fig. 4: Baseline CPU overhead of system call tracing.

uses an LSTM layer to encode this sequence into a 128-
dimensional feature vector. The output of the LSTM layer is
then repeated L times (L=input sequence length) to construct
an intermediate sequence. Finally, this intermediate sequence
is decoded into the original one-hot encoded input sequence
by another LSTM layer with 128 output units, followed by a
time-distributed Dense layer with softmax activation. We train
each AEj with 1K input sequences, each with length of 500.

IV. EVALUATION

In this section, we evaluate our prototype implementation
to answer the following key questions.
• What is the resource and performance overhead of tracing

microservices at the system call level?
• How accurate is the Bayesian based microservice classi-

fication?
• Can the supervised microservice classification scale with

a growing microservice universe?
• How accurately can we detect outlier microservices?
• How robust is the outlier detection to different deploy-

ment environments?
For evaluation we deployed the end-server component of

our prototype as well as test microservices in a VM equipped
with 16 virtual CPU cores at 2.60GHz and 64GB memory. The
VM runs on Ubuntu 17.10, kernel 4.15.0, with bcc v0.5.0 and
eBPF JIT flag enabled.

A. System Call Monitoring

First, we investigate the resource and performance implica-
tions of real-time system call tracing in our prototype.

Baseline CPU overhead. The eBPF-based in-kernel tracer
captures the first N system calls for every new process
spawned by any unclassified microservice. Any subsequent
system calls from the microservice are ignored by the eBPF
tracer. While the resource overhead of the eBPF tracer is
the most pronounced during the first N system calls, every
single subsequent system call still hits the eBPF tracer. We
refer to the CPU overhead of the eBPF tracer after tracing
is disabled as baseline overhead. Any microservice which
remains running after the first N system calls will incur the
baseline overhead. Since real-world microservices typically
generate a huge number of system calls, the baseline overhead
is the critical measure of eBPF tracing’s resource impact.

Fig. 4 reports the baseline overhead for different types of
microservices. To measure the baseline overhead, we compare
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the total CPU usage of a server in two different settings. First,
we deploy a microservice on a baremetal server without the
eBPF tracer and collector running, and measure the total CPU
time (number of CPU seconds) of the server (CPU1) while
synthetic workload is injected into the microservice. Next,
we run the eBPF tracer and collector, but disable tracing for
the microservice. We then replay the same workload used
previously, and measure the total CPU time (CPU2) of the
server. The baseline CPU overhead is then CPU2−CPU1

CPU1
×100.

Fig. 4 shows that the baseline overhead remains low (1–2%)
for most microservices except for Redis. In case of Redis, its
synthetic workload consists of invoking simple GET/SET APIs
over TCP, which does not involve much userspace processing
other than memory read/write and network I/O. However, even
with Redis, we observe that if it is loaded with non-trivial
APIs, e.g., iterative operations (KEYS) or compound operations
(EVAL), its baseline overhead is diminished quickly. From
this experiment, we conclude that our eBPF tracer introduces
reasonably small resource overhead (1–2%) for most real-
world microservices handling realistic workloads.

Fig. 5 explains the reported baseline CPU overhead. In this
figure, we plot the CPU breakdown (kernel vs. user space)
for the same set of microservices, which is measured while
they are operated normally without eBPF tracing. It confirms
that Redis with higher baseline overhead is indeed operating
system intensive, spending 80% time in kernel space.

Effect of test sequence length. In the next experiment, we
show the CPU overhead of tracing actual system calls with
eBPF. We choose Redis and WordPress as two candidates for
testing. As already shown in Fig. 5, these two microservices
exhibit widely different CPU usage patterns; Redis is operating
system intensive with 80% kernel processing, while WordPress
runs only 20% of time in the kernel. In the experiment, we de-
ploy either microservice for five minutes while constant work-
load is injected (e.g., 10K SET/GET requests/sec. for Redis, and
20 HTTP-GET requests/sec. for WordPress). During this run,
we activate the eBPF tracer, and monitor the first N system
calls. We repeat this experiment without the eBPF tracer.
The ratio of CPU time difference in these two experiments
(CPU2−CPU1

CPU1
× 100) indicates the CPU overhead of tracing

N system calls. In Fig. 6, we plot this CPU overhead as a
function of N . As expected, the CPU overhead increases with
N . The overhead at N=0 corresponds to the baseline overhead
for Redis and WordPress, which is consistent with Fig. 4.
Note that the reported CPU overhead is the percentage of
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Benchmark Impact Description
iperf -3% Network throughput
dd -8.7% Disk I/O rate
gzip -0% CPU time

TABLE I: Performance overhead.

eBPF’s CPU usage incurred during the five-minute run. Thus,
as the microservices remain running longer than five minutes,
the overhead curve will flatten and eventually approach the
constant baseline overhead, regardless of N .

Performance overhead. The previous experiments evaluate
the resource overhead of system call tracing. Now we evaluate
the implication of system call tracing on the performance of
the microservices being traced. To emulate network, I/O, and
CPU-bound microservices, we run three benchmark programs,
iperf, dd, and gzip, with and without system call tracing.
Table I suggests that eBPF tracing introduces insignificant
performance overhead for different types of workloads.

B. Microservice Classification

Next, we evaluate the classification capabilities of our
Bayesian model by deploying a variety of real-world microser-
vices on our prototype.

System call sequence collection. For prototype evaluation,
we collect system call sequences from a total of 30 different
types of real-world microservices (Table II). These are among
the most popular containers in terms of downloads [26], and
cover a reasonably diverse spectrum of functionalities. Some
of them are more closely related than others. For example,
MariaDB and Percona are binary compatible with MySQL.
Similarly, Nextcloud is forked from ownCloud, inheriting
many of its features. Such derivative implementations are
not rare in open-source communities, but may complicate
reliable fingerprinting. Other microservices such as WordPress,
Drupal, Joomla, ownCloud and Nextcloud are all PHP-based
web applications running on Apache HTTP server. Thus their
implementations share the same set of PHP APIs and request
processing mechanics of Apache HTTP server.

To collect system call sequences from these microservices,
we generate synthetic workloads either by using public domain
(microservice-specific) workload generators or by manually
accessing the engines. When a given microservice launches
multiple processes, we collect separate system call sequences
from individual PIDs, and concatenate the individual per-PID
system call sequences one after another to form a single long
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Fig. 7: Microservice engine detection.
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Fig. 8: The effect of Bayesian order dependency.

sequence per microservice. We observe that some microser-
vices issue a particular system call consecutively many times
even during idle time (e.g., futex, sched yield). Since
such workload-independent duplicate verbs can create a bias
in conditional probability matrices, we restrict the maximum
number of consecutive duplicates in a system call sequence
to 10, and trim any subsequent duplicates. The length of the
resulting sequences ranges from 30K to 600K across different
microservices. We subdivide the obtained sequence for each
microservice into training and test sequences. The former is
fed into the fingerprint model for training, while the latter is
used to evaluate the accuracy of classification performed by
the model. We utilize these data sets in the rest of evaluation.

Type Microservices

NoSQL database ArangoDB, CouchDB, InfluxDB, MongoDB,
OrientDB, RethinkDB

SQL database MariaDB, MySQL, Neo4j, Percona, Postgres
Analytics ElasticSearch, Telegraf
Content

management Drupal, Ghost, Joomla, WordPress, Xwiki

Key-value store Kafka, Memcached, Redis, ZooKeeper
Proxy HAProxy, Squid3

Storage MinIO, Nextcloud, ownCloud, Samba
Remote desktop Xrdp, Xvnc

TABLE II: Deployed microservices.

Classification accuracy. In the first experiment, we choose
three different categories of microservices (web-based mi-
croservices, SQL databases, NoSQL databases), and inves-
tigate whether our fingerprint model can accurately identify
their different implementations. In all subsequent experiments,
the model used is order-1 Bayesian unless stated otherwise.

Fig. 7 plots the model’s classification accuracy as a function
of test sequence length. To generate many test sequences of
varying length, we extract random subsequences of length N
from the collected original test sequence. For each length

N , we run classification using 100 test sequence samples,
and compute average accuracy. One can see that our model
is able to correctly classify all engines with increasing test
sequence length. NoSQL database engines require less than
200 verbs for accurate classification, while classifying web-
based microservices and SQL databases turns out to be more
difficult, requiring longer sequences (1K to 2K). This behav-
ior is to be expected considering the varied heterogeneity
of their implementations. Among the three groups, NoSQL
databases are the most diverse implementations developed
in different languages (C++, Erlang, Go, Java). The web-
based microservices are all written in PHP and powered by
Apache HTTP server, resulting in moderate similarity. All
three SQL databases are binary compatible implementations
with possibly the most similar run-time behaviors. Note that
the required sequence length (∼1K) for web-based engines
is still short enough to add insignificant CPU overhead from
system call tracing (2% for WordPress; see Fig. 6).

Effect of Bayesian order dependency. As shown above,
it is more difficult to classify microservices if they are func-
tionally similar or originate from the same source code base.
We now investigate whether higher-order Bayesian models are
any better at detecting differences in such cases. In Fig. 8, we
evaluate MySQL and its two variants, MariaDB and Percona.
It shows that higher-order Bayesian models are able to classify
those closely related microservices with shorter test sequences.
For example, the order-1 Bayesian can detect Percona reliably
with 2K verbs, while the order-3 Bayesian can achieve the
same accuracy with 1200 verbs. In case of MySQL, the
required number of verbs for accurate fingerprinting differs
more (1K verbs for order-1 and 200 verbs for order-3). Note
that a higher-order model does not affect the completion time
of fingerprinting, but only increases the model’s training time
and memory footprint for conditional probability matrices.
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Effect of microservice universe size. So far we eval-
uate our model using very limited types of microservices.
To evaluate the model in larger-scale settings, we examine
classification accuracy as a function of microservice universe
size (up to 30) and plot the result in Fig. 9. For a given universe
size M , we randomly choose M microservices out of 30,
perform classification among them 1K times, and compute an
average accuracy. The figure shows that with a bigger universe,
accuracy suffers visibly more with shorter test sequences. With
test sequences of length 1K, our model can fingerprint all 30
microservices of mixed similarity with 99% accuracy.

Hierarchical fingerprinting. The previous result empiri-
cally demonstrates high classification accuracy for a universe
size of up to 30, but it is still difficult to extrapolate the finger-
print model’s accuracy beyond that. In the next experiment, we
evaluate the feasibility of hierarchical fingerprinting described
in Section II-A4, as a solution to deal with an even larger-scale
universe. As the first step, we perform agglomerative clustering
on the 30 microservices we have evaluated so far. Fig. 10
plots the dendrogram of hierarchical clustering with Ward’s
minimum variance linkage. When the default cut threshold
(70% of the maximum linkage) is used, hierarchical clustering
results in six groups (Group 1–6) as labeled in the figure.
One can see that the grouping reflects the functional similarity
among different microservices to a certain extent. For example,
all five web-based microservices fall into Group 6, and three
binary-compatible SQL databases form Group 5.

Once microservice groups are ready, we apply a group-
level fingerprint model for group identification (i.e., finding out
which group a given test sequence belongs to). Fig. 11 shows
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Fig. 12: Outlier/inlier detection of an aggregate autoencoder.

the accuracy of group identification. With test sequences of
length 1K, group-level fingerprinting can achieve near perfect
identification. Once a group is determined, one can restrict
the microservice universe to those engines in that group, and
perform microservice-level classification, for which we already
established the accuracy. Depending on the heterogeneity of
engines in the group, one can selectively apply a higher-order
model for more fine-grained classification as shown in Fig. 8.

C. Outlier Detection

Next, we evaluate the accuracy of our autoencoder-based
outlier detection. The requirement for an ideal outlier detection
model is two-fold. Given a test sequence from an actual outlier
microservice, the detection model should correctly predict that
the sequence does not belong to any existing microservice (i.e.,
no false negative). Conversely, given a test sequence from
any known microservice (i.e., inlier), the model should not
erroneously conclude that the sequence comes from an outlier
(i.e., no false positive). Since our outlier detection procedure
in Algorithm 1 relies on the reconstruction loss produced by
autoencoders, the success of outlier detection is predicated
on finding a reasonable loss threshold L̂ that minimizes both
false-positive and false-negative errors. In the following, we
evaluate this possibility using the system call data sets from
the 30 microservices used previously.

Outlier detection accuracy. Before evaluating Algorithm 1,
we first consider a simpler outlier detection approach as a
comparison, which builds a single autoencoder for the entire
microservice universe E . This autoencoder, which we call
an aggregate autoencoder, learns all possible legitimate se-
quences of verbs generated by existing engines Ej in E . Then
given a test sequence, it declares an outlier if a reconstruction
loss returned by the aggregate autoencoder is higher than L̂.
Otherwise, the sequence is considered an inlier sample. Outlier
detection is simpler than Algorithm 1, but it needs to be
retrained to incorporate every newly detected outlier.
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Fig. 13: Outlier/inlier detection of microservice-level autoencoders across different groups.

Fig. 12 shows outlier/inlier detection accuracy of the aggre-
gate autoencoder as a function of reconstruction loss threshold
L̂. To estimate outlier detection accuracy, we remove one mi-
croservice out of 30, and train an aggregate autoencoder for the
remaining 29 microservices. The removed microservice is then
considered an outlier with respect to the trained autoencoder.
We prepare 30 such aggregate autoencoders, each of which
detects a missing microservice as an outlier. To evaluate inlier
detection accuracy, we also train an aggregate autoencoder for
all 30 microservices. Then, for a particular loss threshold L̂,
we randomly pick one microservice out of 30, treat it as either
inlier or outlier, and perform inlier/outlier detection using
prepared autoencoders. For each value of L̂, we repeat this 100
times, and compute average inlier/outlier detection accuracy.
As expected, if we set L̂ too high, more outlier sequences
are mistakenly classified as inliers (i.e., false-negatives). If we
set L̂ too low, more inlier sequences are erroneously detected
as outliers (i.e., false-positives). More importantly, the figure
clearly shows that the aggregate autoencoder is unable to
minimize false-positives and false-negatives simultaneously,
with the best achievable accuracy of 60% only.

The above experiment motivates training a separate autoen-
coder for each microservice Ej , and building a composite
outlier detection procedure as described in Algorithm 1. In this
case, one can leverage hierarchical two-level outlier detection,
similar to fingerprinting. Using the same six groups of 30
microservices presented earlier, we apply the outlier detection
procedure to each group. Similar to the above experiment,
we examine the outlier/inlier detection accuracy for each
group, and plot the results in Fig. 13. Unlike the aggregate
autoencoder case, in Groups 1–4 and 6, one can find a range
of loss thresholds for which the outlier detection procedure can
achieve zero false-positive and false-negative error. Group 5 is
an exceptional case though, where outlier detection performs
poorly. It turns out that this is because Group 5 contains two
highly similar SQL databases; MySQL and Percona. When
either one is an outlier, there is high chance the detection
procedure misses it because of the presence of the other in the
group. We re-test Group 5 after removing either Percona or

MySQL from the group. In that case, the plot becomes similar
to the other five group cases, achieving 100% accuracy in a
wide range of L̂. To conclude, our experiments demonstrate
the feasibility of highly accurate outlier detection for a ma-
jority of microservices tested. When outlier detection fails in
some corner cases (e.g., MySQL vs. Percona), one can employ
application-specific heuristics (e.g., container image tags) to
disambiguate the detection.

Effect of deployment environments. The demonstrated ac-
curacy of our autoencoder-based outlier detection is based on
the data sets where training and testing sequences are collected
from the same microservice deployment. This raises a question
on how robust the result will be if training and test sequences
are collected from different environments, which is a more
likely scenario. To assess to what extent the autoencoder is
influenced by differing deployment environments, we conduct
the following experiment. We first train an autoencoder for
MySQL using its original training sequences, which were
collected from a standalone MySQL microservice loaded with
an off-the-shelf MySQL load generator. We then re-deploy
a MySQL microservice as a backend of actual web applica-
tions (Drupal, Joomla, WordPress, ownCloud and Nextcloud).
While running, these web applications perform more realistic
MySQL access in application-specific fashions. From each
web application deployment, we collect separate system call
data for MySQL. As a result, we obtain five different sets of
MySQL sequence data.

In Fig. 14(b), we compare the cumulative probability distri-
bution of the reconstruction loss from a MySQL’s autoencoder
when it is tested with five different MySQL data sets. The fig-
ure shows visibly different loss distribution curves across five
different deployment environments. However, when compared
to Fig. 14(a), where reconstruction losses are generated by
non-MySQL test sequences, these differences are insignificant.
In Fig. 14(c), we re-train MySQL’s autoencoder with combined
MySQL data sets from Drupal and Nextcloud deployments
(as these two data sets yield the biggest differences in their
reconstruction losses according to Fig. 14(b)). One can see
that, after retraining, all five loss distributions are now more
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Fig. 14: Robustness of MySQL’s autoencoder.

tightly matched. In short, by comparing Figs. 14(a) and (b),
we can say that the current autoencoders are reasonably robust
to different data collection environments. But Figs. 14(b) and
(c) re-affirm the well-established importance of diversity in
training data to build more robust models.

V. RELATED WORK

System call monitoring has a long history [27] mainly in
the context of anomaly-based intrusion and malware detection.
A number of anomaly detection models are proposed based
on system call monitoring, such as subsequence analysis [27],
behavioral Markov models [28], finite state automata [29], dy-
namic Bayesian networks [30], and deep neural networks [31].
All these works focus on identifying any anomalous deviation
from normal system behaviors, whereas our model is designed
to distinguish among multiple normal and legitimate behaviors
for fingerprinting purposes. None of these works investigates
the practical aspects of their proposed models (e.g,. overhead
of real-time system call monitoring) like ours does.

In [32], the author proposes an approach to enforce security
policies at the system call level. In this approach, auto-
generated security policies, which capture normal application
behaviors, realize simple admission control on a per system
call basis, without considering any dependencies across sys-
tem call sequences. There are several works [33], [34] on
application identification, that are based on network traffic
fingerprinting. By design, the applicability of these approaches
is limited to network applications, or even to a particular
network protocol [33], whereas our approach is universally
applicable to all types of application workload.

Addressing the outlier detection problem in the context
of supervised classification has been attempted for network
traffic classification [35], [36]. These works propose semi-
supervised outlier detection, where a mix of labeled samples
and unlabeled samples potentially from outliers are clustered
together with k-means algorithm to identify an outlier cluster.
These works are evaluated in a much smaller scale than ours,
with less than ten classification categories.

VI. CONCLUDING REMARKS

In this paper, we explore the possibility of classifying
real-world microservices using their system call level behav-
iors. The hierarchical Bayesian models combined with LSTM
autoencoder-based outlier detection show promising results in
terms of accuracy and scalability. We conclude the paper by
discussing two open research problems.

Bayesian vs. LSTM models. Our approach builds on
two complementary models (Bayesian and LSTM models)
to achieve accurate fingerprinting and outlier detection. One
valid question is whether either model can be improved to
subsume the role of the other. On one hand, since LSTM
models are supposed to learn complex sequential dependencies
over arbitrarily long sequences, they, in theory, may be able
to learn local dependencies like order-k Bayesian models.
Alternatively, the LSTM-based outlier detection procedure can
be redesigned based on the Bayesian approach by treating
engine probabilities P [v|Ej ] (or log (P [v|Ej ])) as a loss
metric, and detecting outliers similar to Algorithm 1 using
this metric. However, our experience is that either model alone
does not achieve the same level of accuracy for classification
and outlier detection as the combined models. With LSTM,
we are so far unable to differentiate highly similar, binary-
compatible microservices, which was already suggested in
Fig. 13. With Bayesian-based outlier detection, we achieve
around 90–95% accuracy for outlier detection with Groups 1–
4 and 6, which is not as good as our LSTM-based approach.

High fidelity data collection. In any machine learning
research, the quality of data is crucial to properly train
proposed models. In this paper, we make our best efforts to
collect realistic training data from different microservices by
using microservice-specific workload generators or by actually
operating them based on their typical workflows. Even such
efforts may not ensure the representativeness of the collected
data unless we deploy the microservices in the wild. To
improve on the scale of data, we have also explored more
systematic ways to generate synthetic sequence data using two
types of generative models; Generative Adversarial Networks
(GAN) and Variational Autoencoders (VAE). Unfortunately,
we discovered that the accuracy of fingerprinting with such
synthetic data is highly dependent on the level of randomiza-
tion we introduce within these models (e.g., variance of latent
variables in VAE). As an illustration, it is quite easy to achieve
perfect classification using sequence data with moderately
randomized sets of verbs. However, without knowing the true
heterogeneity of the realistic microservice universe, we cannot
claim any level of accuracy based on synthetic data. After
all, a more practical approach to improve the models would
be data-driven, where the models are continuously re-trained
by incorporating additional inlier/outlier sequence data as they
become available, so that the models’ accuracy and robustness
are retained. We already demonstrated the potential of this
direction in Fig. 14.



APPENDIX

Probability computation with Dirichlet priors. In general,
for an order-k model, the conditional probabilities for engine
Ej can viewed as |V|k×|V| matrix M j where M j

ab = pj(b|a).
Note that

∑
b∈VM

j
ab = 1 for all a ∈ Vk. The number of

entries in the conditional probability matrix M j for the order-
k model is |V|k+1. Each row of the matrix M j can be viewed
as a multinomial distribution with a Dirichlet prior [37] with
parameter vector comprising of |V| ones. In this case, we can
use Ej’s training sequence to compute the posterior probability
estimate of M j

ab = pj(b|a). The proof of the following result
is standard and is omitted.

Theorem A.1: Assuming a Dirichlet prior with parameter
vector comprising of |V| ones for row a of M j , the maximum
likelihood estimate of the posterior distribution given the trace
for an order-k dependence model, is Dirichlet with parameter

M j
ab =

1 +
∑nj−1

t=k+1 I
j(t,ab)

|V|+
∑nj−1

t=k Ij(t,a)
.
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