
LoRaBee: Cross-Technology Communication from
LoRa to ZigBee via Payload Encoding

Junyang Shi, Di Mu, Mo Sha
Department of Computer Science

State University of New York at Binghamton
{jshi28, dmu1, msha}@binghamton.edu

Abstract—Low-power wireless mesh networks (LPWMNs)
have been widely used in wireless monitoring and control appli-
cations. Although LPWMNs work satisfactorily most of the time
thanks to decades of research, they are often complex, inelastic to
change, and difficult to manage once the networks are deployed.
Moreover, the deliveries of control commands, especially those
carrying urgent information such as emergency alarms, suffer
long delay, since the messages must go through the hop-by-hop
transport. Recent studies show that adding low-power wide-area
network (LPWAN) radios such as LoRa onto the LPWMN devices
(e.g., ZigBee) effectively overcomes the limitation. However,
users have shown a marked reluctance to embrace the new
heterogeneous communication approach because of the cost of
hardware modification. In this paper, we introduce LoRaBee,
a novel LoRa to ZigBee cross-technology communication (CTC)
approach, which leverages the energy emission in the Sub-1 GHz
bands as the carrier to deliver information. Although LoRa and
ZigBee adopt distinct modulation techniques, LoRaBee sends
information from LoRa to ZigBee by putting specific bytes in
the payload of legitimate LoRa packets. The bytes are selected
such that the corresponding LoRa chirps can be recognized by
the ZigBee devices through sampling the received signal strength
(RSS). Experimental results show that our LoRaBee provides
reliable CTC communication from LoRa to ZigBee with the
throughput of up to 281.61bps in the Sub-1 GHz bands.

Index Terms—Cross-technology Communication, LoRa, Zig-
Bee, Internet of Things

I. INTRODUCTION

The Internet of Things (IoT) refers to a broad vision
whereby things such as everyday objects, places, and envi-
ronments are connected to each other via the Internet [1].
Many wireless technologies (e.g., ZigBee, WiFi, and Blue-
tooth) are readily available to form the networks which
connect those things for various IoT applications. Many of
those networks follow the low-power wireless mesh network
(LPWMN) paradigm and have been widely deployed for
monitoring and control applications. For instance, sensors
and actuators equipped with ZigBee radios have been used
for a decade in industrial facilities, such as steel mills, oil
refineries, and chemical plants, to monitor and control automa-
tion processes [2]. A multi-hop LPWMN connects sensors
and forwards sensor readings to a control room where a
controller sends commands to actuators. Although LPWMNs
work satisfactorily most of the time thanks to decades of
research, they are often complex, inelastic to change, and
difficult to manage once the networks are deployed. Moreover,

Fig. 1. A LPWMN equipping with LPWAN radios.

the deliveries of control commands, especially those carrying
urgent information such as emergency alarms, suffer long
delay, since the messages have to go through the hop-by-
hop transport [3]. A recent study [4] shows that adding low-
power wide-area network (LPWAN) radios such as LoRa [5]
onto the LPWMN devices (e.g., ZigBee) effectively overcomes
the limitation of LPWMNs, since the key messages can be
transmitted from the controller to the sensors and actuators
through the direct long-distance links, as Figure 1 shows.
However, the industry practitioners have shown a marked
reluctance to embrace the new heterogeneous communication
approach because of the cost of hardware modification.

Cross-technology communication (CTC) technologies have
been seeing appreciable advancement in recent years. Signif-
icant efforts have been made to enable the direct communi-
cation among ZigBee, WiFi, and Bluetooth devices in the 2.4
GHz industrial, scientific, and medical radio (ISM) bands [6]–
[21]. Unfortunately, those existing solutions are not directly
applicable to send messages from LoRa to ZigBee because of
the unique characteristics of LoRa in the Sub-1 GHz bands.
In this paper, we introduce LoRaBee, a novel LoRa to ZigBee
CTC approach, which leverages the energy emission in the
Sub-1 GHz bands as the carrier to deliver information1. The
highlight of LoRaBee design lies in its simplicity and compat-
ibility. Although LoRa and ZigBee adopt distinct modulation
techniques, LoRaBee sends information from LoRa to ZigBee
by putting specific bytes in the payload of legitimate LoRa
packets, namely payload encoding. The bytes are selected
such that the corresponding LoRa chirps can be recognized
by the ZigBee devices through sampling the received signal

1In this paper, we focus on enabling the unidirectional data delivery from
LoRa to ZigBee and leave the MAC and routing protocol designs such as
acknowledgement delivery and collision avoidance for future work.978-1-7281-2700-2/19/$31.00 2019 c© IEEE

strength (RSS). This design ensures full compatibility with the
commercial off-the-shelf (COTS) LoRa and ZigBee devices.
Specifically, this paper makes the following contributions:
• To our knowledge, this is the first paper to investigate

CTC from LoRa to ZigBee in the Sub-1 GHz bands,
distinguished with previous work pertaining to CTC
among WiFi, ZigBee, and Bluetooth devices in the 2.4
GHz band.

• This paper performs an empirical study that investigates
the characteristics of LoRa from a CTC’s point of view
and provides a set of new observations.

• This paper introduces LoRaBee, a novel LoRa to ZigBee
CTC approach. By elaborately tuning the LoRa’s central
carrier frequency and packet payload, a ZigBee device is
capable of decoding the information carried by the LoRa
chirps by purely sampling the RSS. LoRaBee does not
require any hardware modification.

• LoRaBee has been implemented and tested on real hard-
ware. Experimental results show that LoRaBee provides
reliable CTC communication from LoRa to ZigBee with
the throughput of up to 281.61bps2 in Sub-1 GHz bands.

The remainder of the paper is organized as follows. Sec-
tion II reviews the related work and Section III discusses
the background of LoRa and ZigBee. Section IV introduces
our empirical study. Sections V presents the design of our
LoRaBee. Section VI evaluates LoRaBee and Section VII
concludes the paper.

II. RELATED WORKS

There has been increasing interest in developing CTC tech-
nologies in recent years. Significant efforts have been made
to enable the direct communication among ZigBee, WiFi,
and Bluetooth devices in the 2.4 GHz ISM bands [6]–[9],
[11]–[23]. Most of the CTC technologies leverage the energy
intensity, gap between energy appearance, and duration of
radio energy to modulate data. For instance, Chebrolu et al.
proposed to enable the communication from WiFi to ZigBee
devices based on sensing and interpreting energy profiles and
convey information by modulating the WiFi energy duration
to construct an alphabet set [18]. Zhang et al. developed
GapSense which leverages the sequences of energy bursts to
modulate symbol [15]. Kim et al. proposed FreeBee which
adjusts the appearance of WiFi beacons in the time dimension
to transmit modulated data [9], [10]. Yin et al. designed C-
Morse which controls the presence of data traffic to deliver
information [11]. Guo et al. designed a CTC technique that
employs modulation techniques in both the amplitude and
temporal dimensions to optimize the throughput over a noisy
channel [6]. Li et al. developed WEBee which uses WiFi
packets to directly emulate the ZigBee signals in the physical-
layer [12]. Yin et al. proposed to use the presence and absence
of energy profiles to convey information among heterogeneous
wireless devices [19]. More recently, Zheng et al. developed

2As a comparison for the throughput value, a LoRa device pair provides a
throughput of up to 11kbps under the same settings.

(a) A LoRa transmission with upchirps,
downchirps and data chirps.

(b) A single LoRa data chirp.

Fig. 2. LoRa modulation.

StripComm which is an interference-aware CTC modulation
and demodulation scheme [8]. Guo et al. developed ZigFi that
uses channel state information to convey data from ZigBee to
WiFi [7]. Yu et al. [22] and Hao et al. [23] proposed to use
CTC for clock synchronization. Jiang et al. developed SymBee
that achieves symbol-level CTC from ZigBee to WiFi [13].
Jiang et al. [14] and Chi et al. [20] enabled the CTC between
ZigBee and Bluetooth devices. In contrast to previous studies
on CTC among ZigBee, WiFi, and Bluetooth devices in the 2.4
GHz ISM bands, this paper investigates the characteristics of
LoRa in the Sub-1 GHz bands; to our knowledge, it represents
the first systematic study on CTC from LoRa to ZigBee. Our
work is therefore orthogonal and complementary.

III. BACKGROUND

A. LoRa Overview

LPWANs are emerging as a new paradigm in the field of
IoT connectivity [24]. LoRa is an industry LPWAN technology
which has been initiated by Semtech to build scalable IoT
networks. LoRa provides a radio modulation scheme, which
leverages chirp spread spectrum (CSS) modulation to deliver
data. LoRa utilizes the unlicensed ISM bands and incorporates
a variation of CSS technique to encode information.
Modulation technique: LoRa employs the CSS modulation
to modulate signals. It uses frequency chirps with a constantly
increasing (upchirp) or decreasing (downchirp) frequency
which sweeps through a predefined bandwidth. Figure 2(a)
plots an example LoRa transmission with multiple chirps in
the frequency variation over time. The first 10 upchirps are
preamble whose frequency starts from the minimum frequency
(fmin) to the maximum frequency (fmax). They are followed
by 2.25 downchirps annotated as Start Frame Delimiter (SFD)
that goes from fmax to fmin. The rest chirps carry data. The
modulated data chirps start at different frequency positions
represent different encoded bits. When each data chirp reaches
fmax, it wraps around and starts from fmin, as Figure 2(a)
shows. In other words, LoRa uses different starting frequency
of the chirp signal to encode different information. As Fig-
ure 2(b) shows, the value in the y-axis represents the encoded
bits. More LoRa chirps are concatenated to represent more
data bits.
Key physical-layer parameters: LoRa allows users to change
the central carrier frequency (fc), frequency bandwidth (BW),
spreading factor (SF), coding rate (CR), and cyclic redun-
dancy check (CRC). Table I lists the possible values for

TABLE I
KEY LORA PHYSICAL-LAYER PARAMETERS.

Parameter Options
fc between 902 MHz to 928 Mhz
SF 7, 8, 9, 10, 11, 12

BW (KHz) 125, 250, 500
CR 4/5, 4/6, 4/7, 4/8
CRC on or off

Fig. 3. IEEE 802.15.4 channels.

each parameter in the United States. fc determines the central
carrier frequency for data transmission3. BW determines the
magnitude of frequency variation (fmax−fmin), representing
the channel width. Each chirp consists of 2SF chips which can
carry SF bits of data. The time duration of one LoRa chirp
is:

Tchirp =
2SF

BW
(1)

CR uses the Hamming code [25] to provide redundancy and
correct error bits. This number refers to the proportion of the
transmitted bits that actually carry information. LoRa allows
users to enable the CRC check.
Input: The LoRa transceivers provided by Semtech only
accept hexadecimal strings as input. The upper layer protocols
must translate their data into the hexadecimal format. For
instance, “0x6A” may be input into the LoRa transceiver to
carry 106.

B. ZigBee Overview

ZigBee is based on the IEEE 802.15.4 standard, which
specifies to operate in the Sub-1 GHz and 2.4 GHz ISM bands.
Figure 3 plots the channels defined in different frequencies.
The channel 1-10 overlaps the LoRa’s operating frequencies
in the Sub-1 GHz bands with the channel width of 1.2 MHz,
while the channel 11-26 operates in the 2.4 GHz band. Many
COTS ZigBee radios (e.g., TI CC1352R [26] and Silicon
Labs EFR32MG12P433F1024GM48 [27]) support operating
in both Sub-1 GHz and 2.4 GHz bands. ZigBee uses Binary
Phase Shift Keying (BPSK) modulation, which provides the
throughput of up to 40kbps in the Sub-1 GHz bands.

IV. EMPIRICAL STUDY

In this section, we introduce our empirical study that investi-
gates the characteristics of LoRa communication from a CTC’s
point of view and present a series of observations that provide
guidelines for our CTC design. We perform the experiments
with two Raspberry Pi 3 Model B [28]: one integrating
with a SX1272 LoRa shield [29] containing a Microchip

3LoRa can also operate in 2.4 GHz, but provides much shorter link distance.
In this paper, we focus on investigating the CTC in the Sub-1 GHz bands.

(a) CTC sender. (b) CTC receiver.
Fig. 4. Hardware.

Fig. 5. An example RSS trace measured by ZigBee when LoRa and ZigBee
channels overlap completely. ZigBee operates on channel 6 with the central
frequency of 916 MHz. LoRa transmits a packet with the content of 0x00 using
the same central frequency with BW = 250 KHz, SF = 10, CR = 4/5,
and CRC = off .

RN2903 radio [30], which is compatible with LoRa, and the
other integrating with a TI CC1310 launchpad [31], which is
compatible with ZigBee. Figure 4 shows the hardware.

A. Energy Profiling of LoRa Signals on ZigBee

In this set of experiments, we measure the energy emission
from LoRa on ZigBee. We first configure LoRa to operate
completely overlapping the ZigBee channel. Figure 5 plots an
example RSS trace measured by ZigBee when the LoRa and
ZigBee channels overlap completely. As Figure 5 shows, when
LoRa begins to transmit at 72.65ms, the RSS measured by
ZigBee immediately increases from -112dBm to -21dBm. The
RSS values vary slightly within the range of [−24,−21]dBm
during the LoRa transmission (from 72.65ms to 155.59ms).

Observation 1: ZigBee can capture the energy emission
from LoRa, but cannot detect the individual LoRa chirps when
the LoRa and ZigBee channels overlap completely.

We then shift the central frequency of LoRa, making the
LoRa and ZigBee channels overlap partially. Figure 6(a) shows
the frequency settings of LoRa and ZigBee, making a half
of the LoRa channel locate outside the ZigBee channel, and
Figure 6(b) plots an example RSS trace. As Figure 6(b) shows,
when LoRa begins to transmit at 68.60ms, the RSS measured
by ZigBee immediately increases and varies from -51dBm to
-21dBm during the transmission of each LoRa chirp. ZigBee
not only detects the LoRa transmission but also captures the
transmissions of individual LoRa chirps including the first 10
upchirps for preamble, the 2.25 downchirps for SFD, and the
eight modulated data chirps.

Observation 2: ZigBee can detect the upchirps for preamble,
the downchirps for SFD, and the modulated data chirps from

(a) LoRa and ZigBee channels overlap partially.

(b) Example RSS trace.

Fig. 6. An example RSS trace measured by ZigBee when the LoRa and
ZigBee channels overlap partially. ZigBee operates on channel 6 with the
central frequency of 916 MHz. LoRa transmits a packet with the content
of 0x00 using the central frequency of 915.4 MHz with BW = 250 KHz,
SF = 10, CR = 4/5, and CRC = off .

Fig. 7. RSS signatures measured by ZigBee when LoRa transmits packets
with the same payload, which contains one byte (0x01).

its RSS measurements when the LoRa and ZigBee channels
overlap partially.

The Observation 1 and 2 motivates LoRaBee to elaborately
tune the central frequency of LoRa, making its channel par-
tially overlap the ZigBee channel, to enable the CTC from
LoRa to ZigBee.

B. LoRa Payload Encoding

In this set of experiments, we investigate the feasibility
of decoding the LoRa packet payload from the measured

Fig. 8. RSS signatures measured by ZigBee when LoRa transmits 0x01, 0x11,
and 0x6A, respectively.

,
Fig. 9. RSS signatures measured by ZigBee when LoRa transmits 0x01,
0x0101, and 0x010101, respectively.

RSS values on ZigBee. We name the measured RSS trace,
representing the LoRa modulated data chirps in a packet,
as a RSS signature. First, we configure LoRa to transmit
the packets with the same payload and examine whether
ZigBee always captures the same RSS signature. Figure 7
shows three example RSS signatures when LoRa transmits
0x01 repeatedly. From here, we only plot the data chirps and
omit the upchirps and downchirps for preamble and SFD. We
observe that the RSS signatures are always identical to each
other when LoRa transmits the same payload and obtain the
same observation after repeating the experiments with different
packet payloads.

We then configure LoRa to transmit different data bytes.
Figure 8 shows three RSS signatures when LoRa transmits
0x01, 0x11, and 0x6A, respectively. The differences between
the three RSS signatures are noticeable. Please note that LoRa
preprocesses data by performing data whitening (introducing
randomness), adding error correction bits, interleaving (adding
scrambled bits), and adding chirp gray indexing for error
tolerance enhancement before transmitting it. Therefore, the
actual data transmitted by LoRa is encoded and scrambled
from the original one. Although the encoding procedure of
LoRa is closed source, the consistent mapping from the input
data to the generated LoRa chirps is observed empirically.

Observation 3: It is feasible to decode the LoRa payload
from the measured RSS signature on ZigBee since the mapping
from the input data to the generated LoRa chirps is consistent.

We also configure LoRa to carry the same byte multiple
times in its packet payload and observe the RSS signature.
Figure 9 plots three RSS signatures when LoRa transmits
0x01, 0x0101, and 0x010101, respectively. The RSS signatures
are completely different. This is because LoRa rearranges the
bits in the packet payload before transmitting them. The bytes
in the packet payload are not directly concatenated, resulting
in the distinct RSS signatures.

Observation 4: When LoRa carries the same byte multiple
times in its packet payload, the resulting RSS signatures are
different.

The Observation 3 and 4 motivate LoRaBee to send infor-
mation from LoRa to ZigBee by putting a single byte in the
payload of each legitimate LoRa packet. The byte is selected
such that the corresponding LoRa chirps can be recognized by
the ZigBee devices through sampling the RSS.

Finally, we configure LoRa to transmit all possible 1-byte

Fig. 10. RSS signatures measured by ZigBee when LoRa transmits 0x00,
and 0xC0, respectively.

payload varying from 0x00 to 0xFF. We observe that some
RSS signatures are indistinguishable by ZigBee due to its
insufficient RSS sampling accuracy. Figure 10 shows two
example RSS signatures measured by ZigBee when LoRa
transmits 0x00 and 0xC0, respectively.

Observation 5: A ZigBee device may not be able to distin-
guish all possible bytes (0x00-0xFF) which LoRa carries due
to its insufficient RSS sampling accuracy.

The Observation 5 motivates LoRaBee to generate a tailored
encoding scheme for the given ZigBee device with the consid-
eration of its hardware limitation. The encoding scheme only
uses those data bytes whose RSS signatures are distinguishable
by the ZigBee device to carry the CTC data. Therefore,
LoRaBee may transmit more bits to carry the desired data.

C. Feature Selection

To enable the LoRa payload encoding, we need to correlate
the data byte in the LoRa payload to the resulting RSS signa-
ture. The naive approach would be to map the byte to the entire
RSS signature and let the ZigBee and LoRa devices store the
mapping. At runtime, the ZigBee device can run a sequence
matching algorithm to decode the information by comparing
the measured RSS signature against all stored ones. However,
this method suffers four major problems. First, it requires the
LoRa and ZigBee devices to store all RSS sampling points,
resulting in large memory consumption. Second, iterating
through all RSS signatures introduces significant computation
overhead and long delay. Third, the RSS values measured by
the ZigBee device are not very accurate, which may introduce
some sequence matching errors. Fourth, the measured RSS
values depend on the distance between the LoRa and ZigBee
devices. Thus, every ZigBee device must record the RSS
signatures and perform the calibration, which maps each LoRa
payload value to its own measured RSS signature, introducing
significant overhead. The abovementioned problems motivate
us to identify a lightweight feature which can be easily ex-
tracted from the RSS signature and used reliably to decode the
LoRa packet payload. The selected feature must not depend on
the distance between the LoRa and ZigBee devices. Therefore,
only one ZigBee device in the network performs the calibration
and then shares the mapping between LoRa payload values and
RSS signatures to other devices.

We observe that there always exists a sudden drop in the
measured RSS values during the transmission of each LoRa

Fig. 11. Example RSS signature captured when LoRa transmits 0x01 with
eight LoRa chirps. The time duration between the start of LoRa data chirps
and their corresponding RSS drop are marked.

TABLE II
THE EIGHT NUMBER OF RSS SAMPLES Ni BETWEEN THE STARTS OF DATA

CHIRPS AND THE SUDDEN RSS VALUE DROPS. SF=10, BW=250 KHZ,
CR=4/5, AND CRC=OFF.

Payload N1 N2 N3 N4 N5 N6 N7 N8

0x01 62 106 159 165 122 131 95 34
0x2F 66 88 152 163 128 134 95 36
0x33 16 87 161 167 124 133 72 132
0x34 21 104 151 167 124 134 72 132
0xFF 13 85 170 170 126 132 94 132

chirp. This is because the LoRa’s CSS modulation requires
the radio to gradually increase its operating frequency and
wrap around to fmin when it reaches fmax. When the LoRa
and ZigBee channels overlap partially, the RSS measurement
experiences a significant decrease when LoRa begins to use
the frequency located outside the ZigBee channel. Since LoRa
uses the different starting frequency of data chirp signal to
encode different information, the time of those sudden drops in
the RSS measurements depends on the data in the LoRa packet
payload. Figure 11 plots an example of RSS signature with the
marked time duration between the starts of data chirps and
their corresponding sudden RSS value decreases. Our ZigBee
device generates 177 RSS samples during the transmission of
a LoRa chirp. We mark the number of RSS samples between
the start of each data chirp and the sudden RSS value drop Ni

(i ∈ [1, 8]) in Figure 11. It is important to note that this feature
neither relies on the absolute RSS values nor depends on the
distance between the LoRa and ZigBee devices. Therefore,
only one ZigBee device in the network performs the calibration
and then shares the mapping between LoRa payload values and
RSS signatures to other devices. Table II lists some example
Ni records when LoRa transmits different bytes. The 10 LoRa
upchirps for preamble are used by ZigBee to synchronize its
clock and identify the start of each LoRa data chirp.

Observation 6: The eight4 numbers of RSS samples which
capture the sudden RSS value drops can be used as the feature
to identify the RSS signature.

V. LORABEE DESIGN

In this section, we introduce the design of our LoRaBee.
Figure 12 shows the overview of how LoRaBee generates the
encoding scheme for the given LoRa and ZigBee devices.

4LoRa may use more than eight data chirps to carry one byte in its packet
payload. The number is decided by Eq.2 (see Section V-B).

Fig. 12. LoRaBee design overview.

(a) Impact of SF . (b) Impact of BW .
Fig. 13. Impact of SF and BW on the time duration of transmitting LoRa
chirps.

The process consists of four phases including Device Pro-
filing, Configuration Sorting, Configuration Identification,
and Encoding Scheme Generation.

In the first phase, LoRaBee measures the hardware and
software capabilities of the given ZigBee and LoRa devices
(Section V-A). In the second phase, LoRaBee computes and
sorts the upper bound of theoretical throughput from LoRa
to ZigBee under different LoRa configurations (Section V-B).
In the third phase, LoRaBee identifies the LoRa configuration
which provides the maximum actual throughput (Section V-C).
In the final phase, LoRaBee generates the encoding scheme
for the given devices (Section V-D).

A. Device Profiling

LoRaBee first controls the LoRa and ZigBee devices to
perform experiments that quantify the inaccuracy of feature
measurements. Specifically, the LoRa device transmits the
same packet multiple times, while the ZigBee device records
the feature ({Ni|1 ≤ i ≤ Nchirp}) of each RSS signature,
i.e., the number of RSS samples (Ni) between the start of
the ith data chirp and the following sudden RSS value drop.
The maximum variation of those features, denoted as var(N),
is recorded by LoRaBee to serve as the guard space among
RSS signatures (see Section V-C). LoRaBee then measures
the minimal time interval Tg (software delay) between two
consecutive packets transmitted by the given LoRa device. Tg
is used to compute the upper bound of theoretical throughput
from LoRa to ZigBee in Section V-B.

B. Configuration Sorting

The selection of LoRa physical-layer parameters including
SF , BW , CR, and CRC, namely a LoRa configuration,

makes a significant impact on the CTC throughput. According
to Eq. 1, the time duration of transmitting a LoRa chirp
is decided by SF and BW . As Figure 13 shows, the time
duration of transmitting a LoRa chirp doubles every time
SF increases by one, while it is reduced by half when BW
doubles. LoRa transmits the chirps faster when using a smaller
SF and a larger BW . CR and CRC decide how many
chirps LoRa uses to transmit a data byte. Either adding more
redundancy by using a smaller CR or enabling the CRC
check (adding 16 bits) reduces the LoRa throughput. The
selection of those parameters also makes a significant impact
on how many RSS features can be distinguished by the ZigBee
device.

The number of data chirps (Nchirp) in each LoRa packet
can be calculated as:

Nchirp = 8+max(d8PL− 4SF + 8 + CRC +H

4(SF −DE)
e∗ 4

CR
, 0)

(2)
where PL is the LoRa payload size in bytes, CRC is either
16 if the CRC check is enabled or 0 otherwise, H is the size
of LoRa packet header, and DE is either 2 if SF ∈ {11, 12}
or 0 otherwise. Thus, the on-air time of a LoRa packet (Ts)
can be calculated as:

Ts = (Nchirp + 12.25) ∗ 2SF

BW
(3)

where Nchirp + 12.25 represents the total number of LoRa
chirps carrying the packet.

With the minimal inter-packet time interval Tg (see Sec-
tion V-A), the upper bound of theoretical throughput from
LoRa to ZigBee, which LoRaBee provides, is:

Dbound =
8

Ts + Tg
(4)

where 8 is the multiplication of the time (1s) and the number
of bits (8 bits) in each packet.

With Eq. 2, 3, and 4, LoRaBee can compute the upper bound
of throughput Dbound, which it provides under each LoRa
configuration (6 ∗ 3 ∗ 4 ∗ 2 = 144 configurations in total).
LoRaBee then sorts all configurations based on their Dbound

values in the descending order (denoted as {Dbound[i]|1 ≤ i ≤
144}).

Please note that the Dbound values are calculated with the
assumption that the ZigBee device can distinguish all possible
bytes (0x00-0xFF) from its measured RSS features. According
to our Observation 5 in Section IV, a ZigBee device may
not be able to distinguish all of them due to its insufficient
RSS sampling accuracy. Therefore, LoRaBee must compute
the actual throughput Dactual under different configurations
and then identify the best one which provides the maximum
Dactual (see Section V-C).

C. Configuration Identification

Since a ZigBee device may not be able to distinguish
all possible bytes from its measured RSS features, LoRaBee
defines

Dactual[i] = αi ∗Dbound[i] (5)

Algorithm 1: Configuration Identification Algorithm
Input : {Dbound[i]|1 ≤ i ≤ 144}
Output: Dmax, index, Featureselect[][]

1 Dmax = 0, index = 0, Featureselect[][]={0};
2 for i = 1; i ≤ 144; i++ do
3 Run Algorithm 2 to get αi and Featurei[][];
4 Dactual[i] = αi ∗Dbound[i]
5 if Dactual[i] > Dmax then
6 index = i;
7 Dmax = Dactual[i];
8 Copy Featurei[][] to Featureselect[][];
9 end

10 if Dmax ≥ Dbound[i+ 1] then
11 Output index, Dmax, and Featureselect[][];
12 break;
13 end
14 end

where αi ∈ (0, 1] denotes the throughput loss ratio and i
represents one of the 144 LoRa configurations. Algorithm 1
shows our configuration identification algorithm. The in-
put of Algorithm 1 is the sorted throughput upper bound
{Dbound[i]|1 ≤ i ≤ 144}, obtained from Configuration
Sorting (Section V-B). The output of Algorithm 1 contains
the maximum actual throughput (Dmax), the index of the
selected configuration (index), and the corresponding RSS
distinguishable features (Featureselect[][]). Algorithm 1 first
initializes Dmax, index, and Featureselect[][] to zero (line 1).
Then it computes αi by running Algorithm 2 and Dactual[i]
(line 3–4) under each configuration i until Dmax is not less
than Dbound[i+1] (line 10–13). The loop terminates since the
rest configurations cannot provide higher throughput. Because
the maximum actual throughput is already larger than or equal
to the rest theoretical throughput upper bound values. This
design is to reduce overhead.

Algorithm 2 shows the process which computes αi un-
der each configuration i. The input of Algorithm 2 is the
maximum variations of RSS signature features var(N) (see
Section V-A). LoRaBee first coordinates the LoRa and ZigBee
devices to run control experiments to collect all RSS signature
features {F [m][n]|1 ≤ m ≤ 256, 1 ≤ n ≤ Nchirp}, storing
Nchirp records for each possible data byte. Specifically, the
LoRa device transmits packets each of which contains a byte
from 0x00 to 0xFF. During the transmission of each LoRa
packet, the ZigBee device records the numbers of RSS samples
Ni between the starts of data chirps and the sudden RSS value
drops. After obtaining F [][], LoRaBee performs a similarity
test to compute αi (line 3–21). In Algorithm 2, the outside loop
goes through all the elements in F [][] (line 3–21). The inside
loop checks whether the current feature is indistinguishable
from the features which have already been selected (line 4–
14). If not, the feature is added into Featurei[][] (line 15–
19). Otherwise, it is discarded. Each element in Featurei[][]
stores the mapping from a LoRa payload byte (stored in

Algorithm 2: αi and Featurei[][] Computation Algorithm
Input : var(N)
Output: αi, Featurei[][]

1 Run experiments to collect RSS signature features F [][]
under the current configuration;

2 size = 0, count = 0, flag = true, Featurei[][] = {0};
3 for k = 1; k ≤ 256; k ++ do
4 for j = 1; j ≤ size; j ++ do
5 for l = 1; l ≤ Nchirp; l ++ do
6 if | Featurei[j][l]− F [k][l] |≤ var(N) then
7 count++;
8 end
9 end

10 if count == Nchirp then
11 flag = false;
12 end
13 count = 0;
14 end
15 if flag == true then
16 Copy F [k][] to Featurei[size][];
17 Featurei[size][0] = k;
18 size++;
19 end
20 flag = ture;
21 end
22 αi =

blogsize
2 c
8 ;

23 Output αi and Featurei[][];

Featurei[][0]) to its corresponding Nchirp feature values in
Featurei[][1], Featurei[][2], ... , Featurei[][Nchirp]. The
actual number of bits which can be carried by in each LoRa
packet to ZigBee depends on the size of Featurei[][n] array
(denoted as size). Algorithm 2 computes αi as:

α =
Dactual

Dbound
=
blog2 sizec

8
(6)

where blog2 sizec represents the number of bits which can be
carried in each LoRa 1-byte packet by LoRaBee. Algorithm 2
outputs αi and Featurei[][], which are used by Algorithm 1.

D. Encoding Scheme Generation

After finding the LoRa configuration which provides the
maximum throughput, LoRaBee starts to generate the en-
coding scheme. Since only size bytes among 256 possible
ones (0x00-0xFF) can be distinguished by the ZigBee device,
LoRaBee uses the first 2blog

size
2 c distinguishable bytes to

transmit the decimal values between 0 and 2blog
size
2 c − 1 with

blogsize2 c bits. Therefore, LoRaBee uses the first 2blog
size
2 c

values in Featureselect[][0] to encode data.
At runtime, LoRaBee first performs the segmentation by

dividing the input data into pieces, each of which has blogsize2 c
bits, and then transmits those pieces one by one. The LoRa and
ZigBee devices use Featureselect[][] to encode and decode
the information. For example, the LoRa device puts the

value Featureselect[x][0] in the packet payload if it wants
to transmit x, while the ZigBee device decodes x when it
detects the match between the measured RSS feature and
{Featureselect[x][i]|1 ≤ i ≤ Nchirp}. LoRaBee reassembles
the data pieces at the ZigBee device.

Because of signal attenuation and interference, the ZigBee
device may get some wrong values in the RSS signature
feature. LoRaBee may still be able to decode the information
by using the rest Ni. Algorithm 3 shows the algorithm which
is used by LoRaBee to decode information.

Algorithm 3: LoRaBee Decoding Algorithm
Input : Input feature (Input[])
Output: Decoded Result (R)

1 flag = true;
2 for j = 1; j ≤ m; j ++ do
3 for l = 1; l ≤ Nchirp; l ++ do
4 if | Featureselect[j][l]− Input[l] |> var(N)

then
5 flag = false;
6 end
7 end
8 if flag == true then
9 R = j;

10 Output decoded result R;
11 break;
12 end
13 flag = true;
14 end

VI. EVALUATION

To validate the efficiency of our LoRaBee in enabling
the CTC from LoRa to ZigBee, we perform a series of
experiments. We first perform microbenchmark experiments
to validate our design and evaluate the capability of LoRaBee
to effectively identify the best LoRa configuration, which pro-
vides the maximum throughput. We also evaluate the efficiency
of LoRaBee’s encoding and decoding processes. We then
perform experiments to quantify the bit error rate (BER) of
LoRaBee under different link distances in indoor and outdoor
environments and repeat the experiments under controlled
interference. Finally, We study the impact of retransmissions
on LoRaBee.

A. Microbenchmark Experiments

In the Device Profiling phase, LoRaBee coordinates the
LoRa and ZigBee devices to perform control experiments to
measure the variations of the features extracted from the RSS
signatures. Figure 14 plots some example variations deviating
from the median value measured on our ZigBee device. We
observe that the maximum variation var(N) is 2 from all
traces. LoRaBee also measures the minimum inter-packet time
interval (Tg) between two consecutive LoRa packets. Tg of our
LoRa device is 8.33ms. With those two parameters, LoRaBee

Fig. 14. Variations of measured RSS signature features from the median
value. var(N) = 2.

Fig. 15. Theoretical upper bound throughput Dbound vs. actual throughput
Dactual.

can compute the theoretical upper bound throughput Dbound[i]
under each LoRa configuration i in the Configuration Sorting
phase. Table III lists the computed Dbound values under each
LoRa SF , CR, and CRC combination5.

After obtaining the Dbound values, LoRaBee runs control
experiments to measure the actual throughput (Dactual) in the
Configuration Identification phase. To reduce the experimental
overhead, LoRaBee examines the LoRa configurations based
on their Dbound values in the descending order and stops the
experiments if Dbound[i+ 1] is not larger than the maximum
Dactual under the first i configurations. Figure 15 plots the
theoretical throughput upper bound Dbound and the actual
throughput Dactual under different configurations. LoRaBee
finds the maximum throughput of 281.61bps when LoRa uses
the second configuration (SF = 7, CRC = on, CR = 4/5,
BW = 250 kHz). LoRaBee stops the measurements after
obtaining Dactual under the eighth configuration since the
rest configurations cannot provide higher throughput. Please
note that the CTC throughput from LoRa to ZigBee is lower
than the ones among WiFi, Bluetooth, and ZigBee, since LoRa
provides much lower physical bit rates ranging from 250bps to
11kbps under various configurations Table IV lists the number
of distinguishable RSS signatures and Dactual under the first
eight LoRa configurations. As Table IV shows, many RSS
signatures are not distinguishable due to the insufficient RSS
sampling accuracy of the ZigBee device. For example, the
ZigBee device can only identify 72 among 256 RSS signatures
under the second configuration. Table V lists five pairs of
indistinguishable RSS signature features whose differences are
smaller than the error range var(N) = 2.

5We omit the values when BW is 125 KHz or 500 KHz due to the page
limit.

TABLE III
THEORETICAL THROUGHPUT UPPER BOUND Dbound UNDER DIFFERENT LORA CONFIGURATIONS WHEN BW IS 250 KHZ.

SF CRC CR Dbound(bps) Index SF CRC CR Dbound (bps) Index SF CRC CR Dbound (bps) Index
7 off 4/5 375.48 1 9 off 4/5 160.48 17 11 off 4/5 45.91 33
7 on 4/5 375.48 2 9 off 4/6 160.48 18 11 off 4/6 45.91 34
7 off 4/6 366.67 3 9 off 4/7 160.48 19 11 off 4/7 45.91 35
7 on 4/6 366.67 4 9 off 4/8 160.48 20 11 off 4/8 45.91 36
7 off 4/7 358.26 5 9 on 4/5 133.13 21 11 on 4/5 37.17 37
7 on 4/7 358.26 6 9 on 4/6 128.75 22 11 on 4/6 35.81 38
7 off 4/8 350.23 7 9 on 4/7 124.64 23 11 on 4/7 34.54 39
7 on 4/8 350.23 8 9 on 4/8 120.78 24 11 on 4/8 33.36 40
8 off 4/5 233.68 9 10 off 4/5 87.60 25 12 off 4/5 23.52 41
8 on 4/5 233.68 10 10 off 4/6 87.60 26 12 off 4/6 23.52 42
8 off 4/6 226.89 11 10 off 4/7 87.60 27 12 off 4/7 23.52 43
8 on 4/6 226.89 12 10 off 4/8 87.60 28 12 off 4/8 23.52 44
8 off 4/7 220.49 13 10 on 4/5 71.55 29 12 on 4/5 18.95 45
8 on 4/7 220.49 14 10 on 4/6 69.02 30 12 on 4/6 18.25 46
8 off 4/8 214.44 15 10 on 4/7 66.67 31 12 on 4/7 17.59 47
8 on 4/8 214.44 16 10 on 4/8 64.47 32 12 on 4/8 16.98 48

TABLE IV
Dactual UNDER THE FIRST EIGHT LORA CONFIGURATIONS.

Config Distinguishable RSS signatures Dactual (bps)
1 59/256 234.67
2 72/256 281.61
3 70/256 275.00
4 96/256 275.00
5 61/256 223.91
6 102/256 268.69
7 87/256 262.67
8 107/256 262.67

TABLE V
SIMILAR RSS SIGNATURE FEATURES COLLECTED WHEN SF = 7,

BW = 250 KHZ, CR = 4/5, AND CRC = on.

Payload RSS Signature Features Ni

0x00 13 8 16 14 12 12 16 17 17 17 01 12 17
0x06 13 8 16 14 12 12 16 17 17 16 01 11 17
0x1B 12 7 15 14 11 11 15 18 17 16 01 05 03
0x1D 12 7 15 14 12 11 15 18 17 17 01 05 03
0x30 12 7 15 13 11 11 15 19 18 17 01 11 07
0x33 13 7 16 13 12 11 15 18 18 17 01 11 07
0xAA 12 6 15 13 11 10 14 16 16 15 01 16 16
0xAF 13 6 15 12 11 10 14 17 16 15 01 16 16
0xE0 12 7 15 13 11 11 15 16 17 16 10 11 17
0xF3 13 7 15 13 12 11 15 16 16 16 11 11 17

The results gathered from our microbenchmark experiments
not only demonstrate the correctness of our LoRaBee design
but also show that LoRaBee can efficiently identify the LoRa
configuration, which provides the maximum throughput.

B. Encoding and Decoding Efficiency

We also measure the time consumed by LoRaBee to encode
and decode the information on the LoRa and ZigBee devices.
Figure 16 shows the boxplot of 200 measurements. On aver-
age, the LoRa device consumes 0.33ms to encode a packet,
while the ZigBee device uses 4.66ms to extract the features
from the measured RSS samples and decode information from
them. The LoRa packet transmission time is not included in
the result. The fast encoding and decoding speeds benefit from
the lightweight feature which can be easily and accurately
extracted from the RSS signature, demonstrating the efficiency
of LoRaBee. Please note that the ZigBee device consumes a

Fig. 16. Box plot of the time consumed by LoRaBee to encode and decode
information. The results are gathered from 200 experimental runs. Central
red mark in box indicates median; bottom and top of box represent the 25th
percentile (q1) and 75th percentile (q2); crosses indicate outliers (x > q2 +
1.5∗(q2−q1) or x < q1−1.5∗(q2−q1)); whiskers indicate range excluding
outliers.

similar amount of power on sampling the RSS values and
receiving packets. Thus, the energy consumption increase
caused by LoRaBee is marginal.

C. Bit Error Rate

We then measure the BER under the best LoRa configura-
tion, which provides the maximum throughput. We generate
1,500 random bytes in the hexadecimal format using an online
random byte generator [32] and run LoRaBee to deliver them.
We vary the distance between our LoRa and ZigBee devices
ranging from 3m to 12m in an indoor corridor and run the
experiments for 20 times under each distance. Figure 17(a)
plots the cumulative distribution function (CDF) of BER
in an indoor environment. The maximum BER is 1.13%
and the average is 0.82% when the devices are 3m apart.
The maximum BER slightly increases to 1.41%, 1.55%, and
1.59% when the link distance increases to 6m, 9m, and 12m,
respectively. The average BER under those four distances are
0.82%, 1.11%, 1.26%, and 1.28%. The slow increases indicate
that the signal attenuation has a small impact on BER.

We repeat the experiments in an outdoor environment.
Figure 17(b) shows the CDF of BER. Similarly, we observe
that BER increases with increasing distance. The average
BERs are 1.05%, 1.44%, 2.86%, and 5.67% when the link

(a) Indoor environment. (b) Outdoor environment.

Fig. 17. BER measurements in indoor and outdoor environments.

Fig. 18. Box plot of the BER of LoRaBee in the
clean, noisy, and stress testing environments.

distances are 10m, 20m, 30m, and 40m, respectively. From
the results, we can observe that BER increases slowly with
link distance, indicating that signal attenuation slightly affects
LoRaBee’s performance. The results also show that LoRaBee
demonstrates an acceptable performance (BER ≤ 1.61%).

We also repeat the experiments using devices with different
battery levels and in different days with different temperature
and humidity and observe little impact from those factors.
LoRaBee always provides stable performance.

D. Impact of Interference

We also study the impact of interference on the BER of
LoRaBee. We set up two pairs of LoRa and ZigBee devices:
one pair in an indoor corridor and the other in an outdoor
open space. We configure a TI CC1310 launchpad to generate
controlled interference by transmitting back-to-back 64-Byte
ZigBee packets in the central frequency of 915.6Mhz and vary
the distance between the interferer and the LoRa and ZigBee
device pair to create different interference conditions: clean,
noisy, and stress test. We measure the BER when the LoRa
device transmits 500 bytes to the ZigBee device and repeats
the experiments 10 times under each condition. Figure 18
shows the Boxplot of BER when the LoRa and ZigBee devices
are three meter away. In the indoor environment, LoRaBee
achieves median BERs of 0.67%, 1.72%, and 15.10% in
clean, noisy, and stress test environments, respectively. In
the outdoor environment, LoRaBee achieves median BERs of
0.54%, 1.66%, and 12.28% in clean, noisy, and stress test
environments, respectively. The results show that LoRaBee
consistently provides low BERs under moderate interference.
The significant increases on BERs under strong interfer-
ence emphasize the importance of employing an appropriate
medium access control (MAC) protocol (e.g., a TDMA-based
MAC) when using LoRaBee.

E. Impact of Retransmissions

Finally, we evaluate the impact of retransmissions on
LoRaBee. Figure 19(b) shows the performance of LoRaBee
with different number of transmission attempts per packet
when the devices are 6m apart in the corridor. As Figure 19(a)
shows, the retransmissions successfully improve the median
packet delivery ratio (PDR) from 81.54% to 100% when three
transmission attempts are scheduled for each packet. All PDRs
become 100% when four transmission attempts are scheduled

(a) Reliability.

(b) Throughput.

Fig. 19. Performance with different No. of transmission attempts per packet.

for each packet. As Figure 19(b), the throughput decreases
with more transmission attempts. The results show that the
retransmissions effectively enhance the link reliability at the
cost of reduced throughput.

VII. CONCLUSIONS

In this paper, we present LoRaBee, a novel CTC approach
to enable the direct communication from LoRa to ZigBee.
By elaborately tuning the LoRa’s central carrier frequency
and packet payload, a ZigBee device can decode the LoRa
chirps by simply sensing the RSS. An empirical study has been
performed to investigate the characteristics of LoRa communi-
cation from a CTC’s point of view and a series of insights are
distilled to guide our LoRaBee design. Experimental results
show that our LoRaBee provides reliable CTC communication
from LoRa to ZigBee with the throughput of up to 281.61bps
in the Sub-1 GHz bands in indoor and outdoor environments.

ACKNOWLEDGMENT

This work was supported by the NSF through grant CRII-
1657275 (NeTS).

REFERENCES

[1] M. E. Porter and J. E. Heppelmann, “How smart, connected products are
transforming competition,” Harvard Business Review, vol. 92, no. 11,
pp. 64–88, 2014.

[2] C. Lu, A. Saifullah, B. Li, M. Sha, H. Gonzalez, D. Gunatilaka, C. Wu,
L. Nie, and Y. Chen, “Real-Time Wireless Sensor-Actuator Networks for
Industrial Cyber-Physical Systems,” Proceedings of the IEEE, Special
Issue on Industrial Cyber Physical Systems, vol. 104, no. 5, 2016.

[3] B. Li, L. Nie, C. Wu, H. Gonzalez, and C. Lu, “Incorporating Emergency
Alarms in Reliable Wireless Process Control,” in ACM/IEEE Interna-
tional Conference on Cyber-Physical Systems (ICCPS), 2015.

[4] C. Gu, R. Tan, X. Lou, and D. Niyato, “One-Hop Out-of-Band Control
Planes for Low-Power Multi-Hop Wireless Networks,” in IEEE Inter-
national Conference on Computer Communications (INFOCOM), 2018.

[5] LoRa. [Online]. Available: https://lora-alliance.org/
[6] X. Guo, X. Zheng, and Y. He, “WiZig: Cross-Technology Energy Com-

munication over a Noisy Channel,” in IEEE International Conference
on Computer Communications (INFOCOM), 2017.

[7] X. Guo, Y. He, X. Zheng, L. Yu, and O. Gnawali, “ZIGFI: Harnessing
Channel State Information for Cross-Technology Communication,” in
IEEE International Conference on Computer Communications (INFO-
COM), 2018.

[8] X. Zheng, Y. He, and X. Guo, “StripComm: Interference-Resilient
Cross-Technology Communication in Coexisting Environments,” in
IEEE International Conference on Computer Communications (INFO-
COM), 2018.

[9] S. M. Kim and T. He, “Freebee: Cross-Technology Communication
via Free Side-Channel,” in Annual International Conference on Mobile
Computing and Networking (MobiCom), 2015.

[10] S. M. Kim, S. Ishida, S. Wang, and T. He, “Free Side-Channel
Cross-Technology Communication in Wireless Networks,” IEEE/ACM
Transactions on Networking, vol. 25, no. 5, pp. 2974–2987, 2017.

[11] Z. Yin, W. Jiang, S. M. Kim, and T. He, “C-Morse: Cross-Technology
Communication with Transparent Morse Coding,” in IEEE International
Conference on Computer Communications (INFOCOM), 2017.

[12] Z. Li and T. He, “WEBee: Physical-Layer Cross-Technology Commu-
nication via Emulation,” in Annual International Conference on Mobile
Computing and Networking (MobiCom), 2017.

[13] S. Wang, S. M. Kim, and T. He, “Symbol-Level Cross-Technology Com-
munication via Payload Encoding,” in IEEE International Conference on
Distributed Computing Systems (ICDCS), 2018.

[14] W. Jiang, S. M. Kim, Z. Li, and T. He, “Achieving Receiver-Side Cross-
Technology Communication with Cross-Decoding,” in Annual Interna-
tional Conference on Mobile Computing and Networking (MobiCom),
2018.

[15] X. Zhang and K. G. Shin, “Gap Sense: Lightweight Coordination of
Heterogeneous Wireless Devices,” in IEEE International Conference on
Computer Communications (INFOCOM), 2013.

[16] Y. Zhang and Q. Li, “HoWiES: A Holistic Approach to ZigBee As-
sisted WiFi Energy Savings in Mobile Devices,” in IEEE International
Conference on Computer Communications (INFOCOM), 2013.

[17] X. Zhang and K. G. Shin, “Cooperative Carrier Signaling: Harmonizing
Coexisting WPAN and WLAN Devices,” IEEE/ACM Transactions on
Networking, vol. 21, no. 2, 2013.

[18] K. Chebrolu and A. Dhekne, “Esense: Communication through Energy
Sensing,” in Annual International Conference on Mobile Computing and
Networking (MobiCom), 2009.

[19] S. Yin, Q. Li, and O. Gnawali, “Interconnecting WiFi Devices with IEEE
802.15.4 Devices without Using a Gateway,” in International Conference
on Distributed Computing in Sensor Systems (DCOSS), 2015.

[20] Z. Chi, Y. Li, H. Sun, Y. Yao, Z. Lu, and T. Zhu, “B2W2: N-Way
Concurrent Communication for IoT Devices,” in ACM Conference on
Embedded Networked Sensor Systems (SenSys), 2016.

[21] S. Wang, Z. Yin, S. M. Kim, and T. He, “Achieving Spectrum Efficient
Communication under Cross-Technology Interference,” in International
Conference on Computer Communication and Networks (ICCCN), 2017.

[22] Z. Yu, C. Jiang, Y. He, X. Zheng, and X. Guo, “Crocs: Cross-Technology
Clock Synchronization for WiFi and ZigBee,” in International Confer-
ence on Embedded Wireless Systems and Networks (EWSN), 2018.

[23] T. Hao, R. Zhou, G. Xing, M. W. Mutka, and J. Chen, “WizSync:
Exploiting Wi-Fi Infrastructure for Clock Synchronization in Wireless
Sensor Networks,” IEEE Transactions on Mobile Computing, vol. 13,
no. 6, pp. 1379–1392, June 2014.

[24] H. Wang and A. O. Fapojuwo, “A Survey of Enabling Technologies
of Low Power and Long Range Machine-to-Machine Communications,”
IEEE Communications Surveys Tutorials, vol. 19, no. 4, pp. 2621–2639,
2017.

[25] R. W. Hamming, “Error Detecting and Error Correcting Codes,” Bell
System Technical Journal, vol. 2, no. 29, 1950.

[26] TI CC1352R. [Online]. Available: http://www.ti.com/tool/
launchxl-cc1352r1

[27] Silicon Labs EFR32MG12P433F1024GM48. [On-
line]. Available: https://www.silabs.com/products/wireless/
mesh-networking/efr32mg-mighty-gecko-zigbee-thread-soc/device.
efr32mg12p433f1024gm48

[28] Raspberry Pi 3 Model B. [Online]. Available: https://www.raspberrypi.
org/products/raspberry-pi-3-model-b/

[29] SX1272 LoRa Shield for Raspberry Pi. [Online]. Available: https://
www.cooking-hacks.com/sx1272-lora-shield-for-raspberry-pi-900-mhz

[30] RN2903. [Online]. Available: http://ww1.microchip.com/downloads/en/
DeviceDoc/50002390E.pdf

[31] CC1310. [Online]. Available: http://www.ti.com/lit/ds/symlink/cc1310.
pdf

[32] Random.org. [Online]. Available: https://www.random.org/bytes/

