
AG: Adaptive Switching Granularity for Load
Balancing with Asymmetric Topology in Data

Center Network
Jingling Liu, Jiawei Huang, Weihe Li, Jianxin Wang

School of Computer Science and Engineering, Central South University, ChangSha, China 410083
Email: {jinglingliu, jiaweihuang, weiheli, jxwang}@csu.edu.cn

Abstract—Modern data center topologies often take the form
of a multi-rooted tree with rich parallel paths to provide high
bandwidth. However, various path diversities caused by traffic
dynamics, link failures and heterogeneous switching equipments
widely exist in production datacenter network. Therefore, the
multi-path load balancer in data center should be robust to these
diversities. Although prior fine-grained schemes such as RPS and
Presto make full use of available paths, they are prone to experi-
ence packet reordering problem under asymmetric topology. The
coarse-grained solutions such as ECMP and LetFlow effectively
avoid packet reordering, but easily lead to under-utilization of
multiple paths. To cope with these inefficiencies, we propose a
load balancing mechanism called AG, which adaptively adjusts
switching granularity according to the asymmetric degree of
multiple paths. AG increases switching granularity to alleviate
packet reordering under large degrees of topology asymmetry,
while reducing switching granularity to obtain high link utiliza-
tion under small degrees of topology asymmetry. AG is deployed
on the switches with negligible overhead, while making no
modification on end-hosts. We evaluate AG through both Mininet
testbed and large-scale NS2 simulations. The experimental results
show that AG reduces the average and 99th flow completion time
by up to 51% and 56% over the state-of-the-art load balancing
schemes, respectively.

Index Terms—data center, load balancing, asymmetry

I. INTRODUCTION

Modern data centers are commonly organized in multi-
rooted tree topologies such as Clos [1] and Fat-tree [2] with
multiple available paths. The end-hosts utilize the multiple
paths to deliver the increasing traffic of distributed appli-
cations such as web service, social networking and online
retail. Unfortunately, due to traffic dynamics, link failures and
heterogeneous switching equipments, production datacenters
operate under various path diversities, making the topology
asymmetric.

To fully utilize the parallel paths in data centers, many load
balancing approaches have been proposed. As the standardized
scheme in modern data center, Equal Cost Multi-Path (ECMP)
[3] uses flow hashing to transfer flows to available paths.
LetFlow [4] and CONGA [5] reroute flowlets to avoid packet
reordering. Random packet spraying (RPS) [6], Presto [7] and
DRILL [8] split flow at a finer granularity and then spray the
fixed switching units across available paths to make full use
of link resource.

However, most existing schemes are not aware of variation
of network asymmetry. On the one hand, the flow-level ECMP

randomly maps each flow to only one of the paths. The
flowlet-level schemes are unable to timely reroute flowlets
when necessary. Due to their coarse switching granularities,
both flow-level and flowlet-level schemes easily suffer from
the under-utilization of link resource, even when the topology
is symmetric. On the other hand, fine-grained schemes such
as RPS, Presto and DRILL are prone to experience packet
reordering under asymmetric topology.

In this paper, to address the above inefficiencies, we propose
a load balancing mechanism called AG, which adaptively ad-
justs switching granularity under different degrees of topology
asymmetry. To achieve flexibility and resiliency to asymmetry,
AG is sensitive to path latency and periodically adjusts its
switching granularity. Specifically, AG increases the switching
granularity to alleviate packet reordering under high degrees
of topology asymmetry, and reduces the switching granularity
to obtain high link utilization otherwise. We implement AG
on the switches with negligible overhead, while making no
modifications on the TCP/IP protocol stack of the end-hosts.

In summary, our major contributions are:

• We conduct extensive simulation-based studies to analyze
the problems of current load balancing mechanisms under
asymmetric topology, including the packet reordering
of fine-grained load balancing schemes and the under-
utilization of coarse-grained ones.

• We propose a load balancing mechanism AG, which ad-
justs the switching granularity according to the degree of
topology asymmetry. We present the theoretical analysis
on the optimal switching granularity and the design of
granularity adjustment algorithm.

• We evaluate AG in the Mininet implementation and large-
scale NS2 simulations under different realistic workloads.
The results show that AG effectively reduces the average
flow completion time by up to 51% over the state-of-the-
art load balancing schemes. Furthermore, the implemen-
tation overhead of AG is acceptable.

The rest of the paper is organized as follows. We investigate
the problems of load balancing with different granularities un-
der asymmetric topology in Section II. We present the design
overview and details of AG in Section III-V. We evaluate AG
performance with NS2 simulations and Mininet implementa-
tion in Section VI and VII, respectively. We discuss the related
works in Section VIII and then offer concluding remarks in
Section IX.978-1-7281-2700-2/19/$31.00 2019 © IEEE

II. BACKGROUND AND MOTIVATION

In this section, we firstly describe the topology asymmetry
of data center networks and then elaborate the drawbacks of
load balancing schemes with different granularities.

A. Topology Asymmetry

Data center networks enable multiple paths between host
pairs to concurrently transfer traffic. However, the latency of
multiple paths might be different due to traffic dynamics and
link failures [9], making the topology asymmetric. We use
an example to show the causes of topology asymmetry in a
typical Leaf-Spine data center network.

Traffic variations change the degree of asymmetric topology
[10]. As shown in Fig. 1(a), a dynamic background flow is
transmitted by ECMP from leaf switch L2 to leaf switch
L3. Since the link from spine switch S2 to leaf switch L3
is blocked by the background flow, the two paths from L1
to L3 becomes asymmetric. Fig. 1(b) shows the asymmetric
topology caused by link failures. When the link between L2
and S1 breaks down, any traffic from L2 to L3 is forced to
be transferred on path L2-S2-L3. Consequently, traffic from
leaf switch L1 to L3 will go through two paths with different
latencies. Besides, switch failures such as random packet
dropping and heterogeneous switches with different link speed
can also induce topology asymmetry [9].

S1 S2

L3L1 L2

Senders Senders Receivers

Uncongested pathBackground flow

(a) Traffic Dynamics

Congested path

S1 S2

L3L1 L2

Senders Senders Receivers

(b) Link Failures

Fig. 1. Topology Asymmetry.

B. Load Balancing Schemes with Different Granularities

Generally, prior load balancing schemes work at the flow,
flowlet and packet level. In this section, we illustrate the
working mechanisms of load balancing schemes with different
granularities under different degrees of topology asymmetry.

In Fig. 2, three parallel paths with different queueing build-
ups are provided for a single flow, which may be split with
different switching granularities. Our design focuses on the
switch granularity, not the way choosing path. Thus, we
select RPS, ECMP and LetFlow as representatives due to
their simplicity and randomness in choosing path. In fact,
ECMP may choose the best or worst path. Here, we just show
the best case to compare the impact of switching granularity
size. As shown in Fig. 2(a), under large difference among
paths, per-flow scheme such as ECMP may pick the path
with shortest queue to reduce queueing delay and avoid
packet reordering. For flowlet-based schemes, since the gap
between two flowlets is always larger than the maximum
latency difference among paths, the packet reordering is also

Flow

Flowlet

Packet

Packets from a given flow

124 36 5789

124 36 5

89

246

9 17

P2

P1

P2

P1

P2

P1

Flow

Flowlet

Packet

Packets from other flows

124 36 5789

124 36 589

246

9 17

P2

P1

P2

P1

P2

P1

77

P3 P3

P3 P3

358 P3 358 P3

(a) Large Difference

Flow

Flowlet

Packet

Packets from a given flow

124 36 5789

124 36 5

89

246

9 17

P2

P1

P2

P1

P2

P1

Flow

Flowlet

Packet

Packets from other flows

124 36 5789

124 36 589

246

9 17

P2

P1

P2

P1

P2

P1

77

P3 P3

P3 P3

358 P3 358 P3

(b) Small Difference

Fig. 2. Motivation Examples.

alleviated. Though packet-based schemes (e.g., RPS) utilize
all available paths, they are prone to induce significant packet
reordering, resulting in duplicate ACK packets (DUPACKs)
and reduction of congestion window at end-hosts. Thus, under
large degrees of topology asymmetry, coarse-grained schemes
may achieve better performance than fine-grained ones.

However, as shown in Fig. 2(b), when the difference be-
tween three paths is small, coarse-grained schemes cause
under-utilization of link resource. For example, path P3 is
unutilized in flow-based schemes. Since the gap between
consequent packets is not large enough to trigger rerouting
flowlet, the flowlet-based scheme is also unable to fully utilize
all paths. On the contrary, the packet-based scheme makes full
use of all available paths. Moreover, since the path difference
is very small, the impact of packet reordering is negligible.
Therefore, the fine-grained packet-based scheme performs well
under small degrees of topology asymmetry.

C. Network Performance under Fixed Switching Granularity

In this section, we conduct the NS2 simulations to investi-
gate the performances of coarse-grained and fine-grained load
balancing schemes. We compare the performances of ECMP,
RPS and LetFlow. The test topology is a typical Leaf-Spine
topology [11] with 3 Core switches and 2 ToR switches.
There are 3 paths with 250µs propagation delay between any
pair of hosts. The bandwidth of each link between source
and destination leaf switch is 1Gbps. At the leaf level, the
bandwidth oversubscription ratio is 4:3. The buffer size of each
switch is 100 packets. We generate 2 flows between random
pairs of hosts. The gap threshold of LetFlow is set as 500µs
[4]. Each test result is the average value of 10 runs.

1) Packet reordering in fine-grained schemes: In order to
evaluate the impact of asymmetric degree, we increase the
propagation delay of one path. Among three paths, the ratio
of maximum RTT to minimum RTT varies from 1 to 1.5. Fig.
3(a) shows the ratio of 3-dupack events caused by out-of-order
packets to all packets. The coarse-grained schemes ECMP
and LetFlow barely encounter out-of-order problem. On the
contrary, the fine-grained scheme RPS inevitably experiences
packet reordering. Under RPS, the larger difference of path
latency leads to more disordered packets. Therefore, as shown

RPS
ECMP
LetFlow

Pr
[d

up
AC

K>
3]

(%
)

0

1

2

3

4

Ratio of maximum RTT to minimum RTT
1.0 1.1 1.2 1.3 1.4 1.5

(a) Packet Reordering

RPS
ECMP
LetFlow

Av
er

ag
e

CW
N

D
 (p

kt
)

0

40

80

120

160

Ratio of maximum RTT to minimum RTT
1.0 1.1 1.2 1.3 1.4 1.5

(b) The Average Congestion Window

Fig. 3. Packet reordering with Asymmetry.

in Fig. 3(b), the TCP congestion window of end-host is also
reduced under large degrees of topology asymmetry, greatly
degrading the RPS performance.

2) Under-utilization of link resource in coarse-grained
schemes: We measure the link utilization of 3 paths under
three schemes. We measure the throughputs of 3 paths with the
ratio of maximum RTT to minimum RTT as 1.1. RPS makes
full use of the link resource and obtains high throughput as
show in Fig. 4(a). However, coarse-grained schemes such as
ECMP and LetFlow always lead to suboptimal link utilization.
Fig. 4(b) and Fig. 4(c) show that, with ECMP and LetFlow,
some links experience congestion, while the throughputs of
other ones are as low as zero. Fig. 4(d) shows the total
network link utilization when the ratio of maximum RTT to
minimum RTT increases from 1 to 1.5. When the asymmetric
degree is small, RPS achieves the highest link utilization
since it scatters packets across all available paths. However,
under large degrees of topology asymmetry, the link utilization
decreases sharply due to the packet reordering.

Path1 Path2 Path3

Th
ro

ug
hp

ut
 (M

bp
s)

0

300

600

900

1200

Time (ms)
0 10 20 30 40 50 60

(a) RPS

Path1 Path2 Path3

Th
ro

ug
hp

ut
 (M

bp
s)

0

300

600

900

1200

Time (ms)
0 10 20 30 40 50 60

(b) LetFlow

Path1 Path2 Path3

Th
ro

ug
hp

ut
 (M

bp
s)

0

300

600

900

1200

Time (ms)
0 10 20 30 40 50 60

(c) ECMP

RPS
ECMP
LetFlow N

et
w

or
k

Ut
ili

za
tio

n
(%

)

0

25

50

75

100

Ratio of maximum RTT to minimum RTT
1.0 1.1 1.2 1.3 1.4 1.5

(d) Network Utilization

Fig. 4. Under-utilization of Link Resource with Asymmetry.

Finally, we test the network performance under realistic
workload. We generate 50 flows following a Poisson process
with flow size distribution of Data Mining workload [2]. There
are 8 paths with the propagation delay as 250µs between any
pair of hosts. Fig. 5(a) and Fig. 5(b) show the average flow
completion time (AFCT) and the 99th percentile flow com-
pletion time (99th FCT), respectively. When the asymmetric
degree is low, RPS achieves the lowest AFCT and 99th FCT
due to the benefit of high network utilization. Under the high
degree of topology asymmetry, however, since the positive

RPS
ECMP
LetFlow

O
ve

ra
ll

AF
CT

(m
s)

0

2

4

6

8

Ratio of maximum RTT to minimum RTT
1.0 1.1 1.2 1.3 1.4 1.5

(a) Overall AFCT

RPS
ECMP
LetFlow

99
th

 F
CT

(m
s)

0

8

16

24

32

Ratio of maximum RTT to minimum RTT
1.0 1.1 1.2 1.3 1.4 1.5

(b) 99th FCT

Fig. 5. The Impact of Asymmetric Topology.

effect of alleviating packet reordering dominates, ECMP and
LetFlow obtain lower flow completion time than RPS.

D. Summary

The analysis of the load balancing schemes with different
granularities leads us to conclude that: (i) the coarse-grained
schemes are unable to make full use of link resource and
may lead to under-utilization of network resource. (ii) though
the fine-grained schemes utilize all available paths, they in-
duce significant packet reordering under asymmetric topology.
Therefore, we propose an asymmetry-aware load balancing
mechanism, which adaptively adjusts switching granularity un-
der different asymmetric degrees to mitigate packet reordering
and obtain high link utilization. In the rest of the paper, we
will elaborate on our design details.

III. AG OVERVIEW

In this section, we present the architecture of our design
AG. Our goal is to design a load balancing mechanism
adjusting switching granularity based on the latency difference
among multiple paths to achieve the tradeoff between packet
reordering and link utilization. When the difference in path
latency is small, the switching granularity is fine-grained.
Therefore, the flows are able to efficiently make full use
of multiple paths and quickly complete their transmissions.
In contrast, when the latency difference becomes large, the
switching granularity adaptively increases to be robust and
resilient to packet reordering.

Switch

Leaf-to-Leaf
Latency

Measurement

Packet
Train

Scheduling

Latency-based Asymmetric Degree

Packet Train Packet Train

Packet Train Size Adjustment

P k t T i P k t T i

Fig. 6. AG Overview.
In our design, the two key points of AG are how to measure

the latency difference among multiple paths and how to adjust
switching granularity according to the asymmetric degree of
multiple paths. Fig. 6 shows the architecture of AG, which is
deployed on ToR switches and has three modules.

1) Leaf-to-Leaf Latency Measurement: A congestion-
aware load balancing approach has advantages over
congestion-agnostic ones. However, handling congestion
in asymmetric topology essentially requires global knowledge
about each path. In our design, to obtain the accurate path
information with very small overhead, AG periodically

measures the latency of each path from the source leaf switch
to the destination one. To control the measurement overhead,
only a few data packets are selected as the probe packets.
Moreover, AG uses the timestamp of TCP header in probe
packet to piggyback the path latency information, without
any modifications on existing TCP protocol.

2) Packet Train Adjustment: The switching granularity
is a key point of our design. On the one hand, too small
granularity exacerbates the adverse effect of packet reordering
under asymmetric topology. On the other hand, too large
granularity is prone to cause load imbalance and link under-
utilization. The switching granularity of AG is called as packet
train, which is a burst of packets belonging to one congestion
window in a single flow. The packet train adjustment module
adaptively adjusts the size of packet train according to the
latency-based asymmetric degree of all paths measured by
Leaf-to-Leaf latency measurement module. We develop a
rational model to select the optimal packet train size based
on asymmetric degree in Section IV-A.

3) Packet Train Scheduling: The packet train scheduling
module picks the forwarding path for each packet train. In
order to avoid synchronization effect of herd behavior when
multiple packet trains choose the same path, AG simply
chooses a path at random for each packet train. For a new
packet train, the first packet is scheduled to a random path
and the subsequent packets are assigned to the same path until
the total number of packets sent exceeds the packet train size
calculated by the packet train adjustment module.

IV. PACKET TRAIN ADJUSTMENT

In this section, we firstly analyze the optimal size of packet
train, and then give the packet train adjustment algorithm.

A. Packet Train Size Optimization

The packet train size affects both the TCP reordering
probability and network utilization under different asymmetric
degrees. We give the analysis on how to get the optimal value
of packet train size as following.

Let W and gran denote the TCP congestion window and
packet train size, respectively. Then the number of packet
trains X in the congestion window W is W

gran .
When the packet trains are transferred on multiple paths,

a packet train is out-of-order only when at least one packet
train sent later arrives at the destination earlier. We assume
that the X packet trains may select M parallel paths, which
consist of Mb congested paths and Mg uncongested paths with
the propagation delay RTTb and RTTg , respectively. In this
case, the out-of-order event occurs when one packet train is
transmitted on congested path and at least one packet train
sent later is transmitted on uncongested path. Therefore, the
reordering probability P of X packet trains is calculated as

P =

X−1∑
i=1

P i−1
g × Pb × (1− PX−i

b), (1)

where Pg and Pb are the probabilities that the packet train
selects the uncongested and congested paths, respectively.

Specifically, Pg and Pb may be various under different load
balancing schemes. In our design, in order to avoid synchro-
nization effect, each packet train is randomly assigned to one
of the available paths. Thus, the probability Pb that a congested
path is selected is calculated as Mb

M .
Then, we get the probability Pg that an uncongested path

is selected as
Pg = 1− Mb

M
. (2)

Substitute Pb and Pg into Equation (2), we get the reorder-
ing probability P as

P =

X−1∑
i=1

(1− Mb

M
)i−1 × Mb

M
× (1− (

Mb

M
)X−i). (3)

Fig. 7 shows the reordering probability P with increasing
numbers of congested paths Mb and packet train size gran.
The total number of paths is 45. W is set as 64KB (i.e., about
44 packets) due to the limitation of the Advertised Window
field in TCP header. Since the packet train is not larger than a
congestion window, the packet train size is in [1, 44]. Fig.
7(a) shows that the adverse effect of packet reordering is
exacerbated under the larger asymmetric degree. When half
of paths are congested, the most serious packet reordering
occurs. As depicted in Fig. 7(b), the reordering probability
decreases with the increasing packet train size under different
asymmetric degrees. For instance, a small packet train easily
leads to significant reordering, while a large one does not
induce out-of-order problem.

gran=1
gran=5

gran=10
gran=15

gran=20

Pa
ck

et
 R

eo
rd

er
in

g
Pr

ob
ab

ili
ty

0

0.2

0.4

0.6

0.8

1.0

Number of Congested paths
0 5 10 15 20 25 30 35 40 45

(a) Increasing Mb

Mb=0
Mb=5

Mb=10
Mb=15

Mb=20

Pa
ck

et
 R

eo
rd

er
in

g
Pr

ob
ab

ili
ty

0

0.2

0.4

0.6

0.8

1.0

Size of Packet Trains (pkt)
0 5 10 15 20 25 30 35 40

(b) Increasing gran

Fig. 7. Packet Reordering Probability

When detecting the out-of-order packet, the TCP sender
reduces its congestion window by half. Thus, with packet
reordering probability P and maximum congestion window
W , we get the average congestion window W0 as

W0 = (1− P)×W + P × W

2
. (4)

Though the small size of packet train leads to large packet
reordering probability, the small packet trains could utilize
more paths, increasing the total utilized bandwidth. Given
the link bandwidth C for each path, since each packet train
randomly picks its transmission path, the total bandwidth for
X packet trains is X × C.

Typically, the end-to-end latency mainly consists of the
queueing and propagation delay. We obtain the average end-
to-end round-trip time RTT as

RTT =
W

X × C
+ PX

g ×RTTg + (1− PX
g)×RTTb. (5)

With the average RTT and congestion window W0, we get
the average rate r as

r =
W0

RTT
=

(1− P)×W + P × W
2

W
X×C + PX

g ×RTTg + (1− PX
g)×RTTb

.

(6)
Finally, we choose the optimal granularity gran∗ to obtain

the maximum value of average rate r as

gran∗ = argmax
gran∈[1,44]

‖r(gran)‖. (7)

The numeric comparison of optimal granularity is shown in
Fig. 8. With the increasing number of congested paths Mb, the
optimal granularity becomes larger due to more adverse effect
of packet reordering. We also conduct the NS2 simulation
experiment in Leaf-Spine topology. There is one 1MB TCP
flow using 45 paths to transmit its packets. The bandwidth
oversubscription ratio is 10:9 at the leaf level. Other settings
are the same as that in Section II-C. Fig. 8 shows that the
simulation test result is consistent with the result of numeric
analysis.

Numeric Analysis
NS2 Simulation

O
pt

im
al

 G
ra

nu
la

rit
y

(p
kt

)

0

7

14

21

28

Number of Congested Paths
0 4 8 12 16

Fig. 8. Optimal Size of Packet Train with Varying Mb.

B. Packet Train Adjustment Algorithm

To cope with the packet reordering of fine-grained load bal-
ancing schemes and under-utilization issue of coarse-grained
ones, AG adaptively adjusts the switching granularity accord-
ing to asymmetric degree.

When the timer expires after timeout T , AG firstly es-
timates the latencies of all paths between the source leaf
and destination leaf switch. Then AG updates the number of
congested path whose latency is larger than the average RTT.
With the path latency information, AG chooses the switching
granularity such that the average rate r is maximal. Here, we
use the binary searching to quickly find the optimal switching
granularity. The initial search boundaries are 1 and 44. We set
the maximum optional granularity as the maximum congestion
window size, which is 64KB (i.e., about 44 packets). Note
that the computational time complexity of the packet train
adjustment algorithm is O(log2 n) for n (i.e, 44) optional
switching granularities. It only requires 6 iterations to find
the optimal switching granularity. We enforce the optimal
granularity to all active flows. When the number of arriving
packets from a given flow is less than the optimal granularity,
other flows do not follow the previous packet train to ensure
in-order transmission. Though it may lead to a little traffic
imbalance, since the maximum granularity is not large, the
performance loss is still acceptable. We set the empirical
timeout T as 500µs [9].

V. LEAF-TO-LEAF LATENCY MEASUREMENT

To make correct forwarding decisions, the load balancing
schemes should gather the congestion states from multiple
paths. In our design, AG measures the latency from the source
leaf switch to the destination one. However, to obtain the
accurate global information in real-time manner with small
overhead is a challenging issue. To address this issue, we
utilize two reserved bits and the option fields of TCP header
to collect the path delay with very small overhead. AG
periodically measures the global latency of each path between
the source and destination leaf switches.

As shown in Algorithm 1, when the timer expires after
timeout T , AG marks the 1st reserved bit of packets sent
from the source leaf switch to destination one. AG only marks
one packet as probe packet on each path to limit overhead.
Specifically, when a probe packet is sent from port ps to the
destination leaf switch, the source leaf switch firstly updates
the timestamp in TCP header of the probe packet with current
time, and meanwhile writes the subnet address of source leaf
switch into the option field of the TCP header. Note that
servers under the same ToR switch are assigned addresses with
the same IP subnet [12].

When the destination leaf switch receives the probe packet
from its port pd, the leaf-to-leaf latency information will be
updated by subtracting the probe packet’s timestamp from
the current time. Then, a data or ACK packet is selected
to sent from port pd to the source leaf switch which is
specified by the subnet address in the probe packet header. The
selected piggyback packet feedbacks the latency information.
The destination leaf switch marks the piggyback packet with
the 2nd reserved bit. The subnet address of destination leaf
switch is also written into the option field of piggyback packet.
Moreover, the destination leaf switch resets the 1st reserved
bit and the option field of the probe packet to 0.

Finally, when receiving a piggyback packet from port ps, the
source leaf switch firstly records the port ps, subnet address
of destination leaf switch and one-way delay of corresponding
path. Then, source leaf switch resets the 2nd reserved bit
and option field of piggyback packet to 0. Since the packet
trains are randomly transferred across all paths, the source
leaf switch can collect the path latency from any output port
to all destination ones. We calculate the one-way delay based
on the assumption that the network devices are synchronized.
Though Precision Time Protocol [13] can synchronize clocks,
it requires hardware support and may lost precision with the
increasing traffic load. To deal with the asynchronous problem,
we calculate the real one-way queueing delay by subtracting
the base delay from the measured one-way delay. The base
delay is the one-way delay with zero queueing and is obtained
by recording the minimum history delay. Therefore, even when
the network devices are actually asynchronous, we still get real
one-way queueing delay without time synchronization.

AG brings about limited overhead, since it only mea-
sures the one-way-delay by using source and destination
leaf switches. Moreover, to reduce overhead and enhance

Algorithm 1: Measuring Leaf-to-Leaf Latency

Parameters:
OWD[]: One-way delay;
r1: The first reserved bit in the TCP header;
r2: The second reserved bit in the TCP header;
time: Timestamp in the option field of TCP header;
saddr: Source IP subnet in the option field of TCP

aaaaaaaa header;
ToRs: Source leaf switch;
ToRd: Destination leaf switch;

Initialization:
OWD[]← {}; T ← 500µs;

Function SOURCE LEAF SWITCH()
begin

if the timer expires after T then
select a packet Spkt sent from port ps to
ToRd as probe packet;
Spkt.r1 = 1;
Spkt.time = current time;
Spkt.saddr = ToRs.subnet;
reset the timer;

On receiving piggyback packet Rpkt from port ps:
if Rpkt.r2 == 1 && Rpkt.saddr ==
ToRd.subnet then

pathID = the path from port ps to ToRd;
OWD[pathID] = Rpkt.time;
Rpkt.r2 = 0;
Rpkt.saddr = 0;

Function DESTINATION LEAF SWITCH()
begin

On receiving probe packet Spkt from port pd:
if Spkt.r1 == 1 && Spkt.saddr ==
ToRs.subnet then

select a packet Rpkt sent from port pd to
ToRs as piggyback packet;
Rpkt.r2 = 1;
Rpkt.time = current time - Spkt.time;
Rpkt.saddr = ToRd.subnet;
Spkt.r1 = 0;
Spkt.saddr = 0;

scalability, AG periodically uses few data and ACK packets
to carry the delay information in the option field of TCP
header. Thus, the path delay is collected with very small traffic
and deployment overhead. Meanwhile, it is worthy to note
that we use only 10 bytes to record the state information of
each path in the design of AG. Since the number of path is
usually not large [14], given the 50-100MB SRAM available
in the modern switching ASICs for storing path states [15],
the deployment overhead on leaf switches can be neglected.

VI. SIMULATION EVALUATION

In this section, we conduct the NS2 simulation tests to
evaluate the performance of AG. We firstly test the basic
performance of AG, and then compare AG with the state-
of-the-art schemes under datacenter workloads in large-scale
test. We also evaluate the accuracy of leaf-to-leaf latency
measurement. We finally test AG performance under different
sample intervals. We use flow completion time (FCT) as the
primary performance metric.

A. Basic Performance

In this section, we test the basic performance of AG.
We compare the packet reordering, link utilization and flow
completion time of AG, RPS, ECMP and LetFlow. We use the
Leaf-Spine topology with 4 paths. The round trip propagation
delay is 250µs and the link bandwidth is 1Gbps. We set
the value of TCP RTO as 10ms [9]. The buffer size of
each switch is 100 packets. We generate 2 TCP flows with
size of 20MB. There is a 500Mbps UDP background flow
on each path to induce congestion. Meanwhile, to produce
topology asymmetry, we increase the sending rate of UDP
flow to 800Mbps on one randomly selected path from 100ms
to 200ms. We set the sample interval as 500µs. Each result is
the average value of 10 runs.

Fig. 9(a) shows the switching granularity of AG. When the
multiple paths are symmetric before 100ms or after 200ms,
AG maintains small switching granularities to obtain high link
utilization. While the asymmetric degree of multiple paths
becomes large, AG increases switching granularity to alleviate
packet reordering. Note that AG exhibits good convergence in
adjusting the switching granularity.

Fig. 9(b) shows the ratio of 3-dupack events caused by out-
of-order packets to all packets. When there is no background
flow, the packet reordering is not serious for all schemes, be-
cause the multiple paths are symmetric. After 100ms, however,
the background flow makes the topology asymmetric. In this
case, the flow-level scheme ECMP still totally avoids packet

Sw
itc

hi
ng

 G
ra

nu
la

rit
y

(p
kt

)

0

5

10

15

20

Time (ms)
0 50 100 150 200 250 300

(a) Switching Granularity

RPS ECMP LetFlow AG

Pr
[d

up
AC

K>
3]

(%
)

0

2

4

6

8

Time (ms)
0 50 100 150 200 250 300

(b) Packet Reordering

RPS ECMP LetFlow AG

N
et

w
or

k
Ut

ili
za

tio
n

(%
)

0

25

50

75

100

Time (ms)
0 50 100 150 200 250 300

(c) Network Utilization

AFCT 99.99th

FC
T

(m
s)

0

120

240

360

480

Comparison Scheme
RPS ECMP LetFlow AG

(d) FCT

Fig. 9. The basic performance with different load balancing mechanisms.

LetFlow
Presto
DRILL

Hermes
HULA
AG

AF
CT

(m
s)

0

0.5

1.0

1.5

2.0

Load
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(a) Small Flow (<100KB) AFCT

LetFlow
Presto
DRILL

Hermes
HULA
AG

AF
CT

(m
s)

0

50

100

150

200

Load
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(b) Long Flow (>1MB) AFCT

LetFlow
Presto
DRILL

Hermes
HULA
AG

99
th

 F
CT

(m
s)

0

60

120

180

240

Load
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(c) Overall 99th FCT

LetFlow
Presto
DRILL

Hermes
HULA
AG

AF
CT

(m
s)

0

5

10

15

20

25

Load
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(d) Overall AFCT

Fig. 10. FCT for the Data Mining workload in the asymmetric topology.

LetFlow
Presto
DRILL

Hermes
HULA
AG

AF
CT

(m
s)

0

0.5

1.0

1.5

2.0

2.5

Load
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(a) Small Flow (<100KB) AFCT

LetFlow
Presto
DRILL

Hermes
HULA
AG

AF
CT

(m
s)

0

50

100

150

Load
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(b) Long Flow (>1MB) AFCT

LetFlow
Presto
DRILL

Hermes
HULA
AG

99
th

 F
CT

(m
s)

0

50

100

150

200

Load
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(c) Overall 99th FCT

LetFlow
Presto
DRILL

Hermes
HULA
AG

AF
CT

(m
s)

0

10

20

30

40

Load
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(d) Overall AFCT

Fig. 11. FCT for the Web Search workload in the asymmetric topology.

reordering. LetFlow has none out-of-order packets, because the
flowlet timeout is larger than the maximum delay difference
between the parallel paths. RPS experiences the most serious
packet reordering exacerbated by the background flow, because
it makes forwarding decisions for each packet with a random
style. Compared with ECMP and LetFlow, AG experiences a
little more packet reordering due to its random scheduling
pattern. However, AG can sense the topology asymmetry
and adjust the switching granularity. Therefore, the packet
reordering ratio of AG is still acceptable (i.e., about 2%).

Fig. 9(c) shows the overall network utilization. Although
RPS sprays packets to all paths, the network utilization of
RPS is suboptimal due to the small sending rate caused by
serious packet reordering. The network utilization of coarse-
grained schemes such as ECMP and LetFlow is less than
50%, because 2 flows respectively almost fully utilize 2 paths
at a time, while the other 2 paths are unused. AG achieves
high network utilization, because it adaptively adjusts the
switching granularity based on path asymmetry to make a
tradeoff between the packet reordering and link utilization.

Fig. 9(d) shows the average and 99.99th flow completion
time. The reason that AG effectively reduces the FCT is
twofold. On the one hand, AG selects an adaptable switching
granularity based on the degree of topology asymmetry, allevi-
ating packet reordering and avoiding the excessive reduction of
TCP congestion window compared to the fine-grained scheme
RPS. On the other hand, AG obtains higher link utilization by
transmitting the packet trains on multiple paths, compared to
the coarse-grained schemes such as ECMP and LetFlow.

B. Large-scale Simulation Test

In this test, we compare AG with other state-of-the-art
solutions in large-scale simulations. We build an 8x8 leaf-spine
topology with 1Gbps links and 256 servers. There are 8 equal
cost paths with the propagation delay as 250µs between any
pair of hosts. We set the round trip propagation delay of one
randomly selected path as 300µs to produce delay asymmetry.
The buffer size of each switch is 100 packets. We set the
value of TCP RTO as 10ms [9]. We choose the realistic Data

Mining workload [2] with mostly short flows and Web Search
workload [17] with a mixture of short and long flows. We vary
the overall workload from 0.1 to 0.8 to thoroughly evaluate
the performance of AG. Moreover, we increase the asymmetric
degree by changing the ratio of the maximum number to the
average number of hosts under each ToR switch from 1 to
1.8 according to the increasing traffic load. We set the sample
interval as 500µs. Each result is the average value of 10 runs.

We compare AG with the state-of-the-art load balancing
schemes, such as Presto [7], LetFlow [4], DRILL [8], Hermes
[9] and HULA [18].

Presto: Presto splits a flow at fixed flowcell granularity with
the maximum TSO size (64 KB), and then chooses the paths
in a round-robin way for the flowcells.

LetFlow: LetFlow simply picks a random path for each
flowlet. In order to avoid packet reordering, the gap between
flowlets is usually larger than the maximum delay difference
between the parallel paths. In the test, the gap threshold is set
as 500µs.

DRILL: DRILL is a packet-level load balancing scheme
and makes forwarding decision for each packet based on
the local congestion information at switch. It compares the
queueing lengths of two random output ports and last selected
port, and selects the one with the minimum queueing length
to send the arriving packet.

Hermes: Hermes detects comprehensive path conditions
and makes deliberate rerouting decisions when there is a path
with better condition. The flow is rerouted only when its
sending size exceeds a threshold (i.e., 600KB) and its sending
rate is lower than a threshold (i.e., 30% of the link capacity).
We set the parameters as the same as that in Ref [9].

HULA: HULA periodically tracks congestion of the best
path using special probe packets, and reroutes the flowlets to
the best next hop. In HULA, we set the flowlet gap as 500µs
and the probe frequency as 200µs.

We show the simulation results of Data Mining workload
and Web Search workload in Fig. 10 and Fig. 11, respectively.
In Fig. 10(a) and Fig. 11(a), the average FCT of short
flows increases with larger traffic load. Moreover, the FCT

Measured Leaf-to-Leaf Delay
Real Leaf-to-Leaf Delay

Le
af

-t
o-

Le
af

 D
el

ay
 (u

s)

0

250

500

750

1000

Time (ms)
0 5 10 15 20 25 30 35 40 45 50

(a) Leaf-to-Leaf Latency

R-
Sq

ua
re

0

0.2

0.4

0.6

0.8

1.0

Flow Arrival Rate (flows/sec)
100 500 1000 1500 2000 2500

(b) Poisson Distribution

R-
Sq

ua
re

0

0.2

0.4

0.6

0.8

1.0

Heavy-tail Factor α
1 1.2 1.4 1.6 1.8 2

(c) Heavy-tail Distribution

Fig. 12. Accuracy of Estimating Leaf-to-Leaf Latency.

improvement of AG also increases under large degrees of
topology asymmetry. We observe that Hermes performs poorly
for small flows because of its conservative rerouting decision.
Under Hermes, the flow is rerouted only when its size exceeds
a threshold (i.e. 600KB), resulting in low link utilization and
large AFCT for short flows. Presto splits flow into a fixed
granularity (i.e. 64KB). Though mitigating the issues of low
link utilization and packet disordering to a certain extent, the
fixed granularity of Presto is not adaptable to all asymmetric
degrees. Due to the adaptive switching granularity, AG reduces
the average FCT of short flows by up to 37%.

Fig. 10(b) and Fig. 11(b) show the average FCT of long
flows under different traffic loads. Since DRILL makes for-
warding decisions only according to the local information at
switch buffer, it is prone to experience packet reordering under
highly asymmetric topology. Therefore, DRILL displays the
poor performance because of the packet reordering problem.
Like LetFlow, HULA reroutes the flowlets only when the
flowlets emerge. Since the Web Search workload contains
more long flows, HULA has more chances to reroute flowlets,
thus showing better adaptability and obtaining lower average
FCT than that in the Data Mining workload. Meanwhile,
HULA reroutes the flowlets to the best next hop, thereby
obtaining better performance than LetFlow. Compared with
the other schemes, AG alleviates the impacts of large queueing
delay and out-of-order problem by adaptively adjusting the
switching granularity of long flows according to the latency-
based congestion conditions. Therefore, AG reduces the aver-
age FCT of long flows by up to 55% over other schemes.

Overall, AG significantly improves tail FCT and AFCT
performances compared with the other four schemes. Fig.
10(c) and Fig. 11(c) show that AG reduces the tail FCT by
around ∼23%-56% and ∼23%-53% under Data Mining and
Web Search load, respectively. As shown in Fig. 10(d) and Fig.
11(d), AG has about ∼22%-51% and ∼18%-48% mean FCT
improvements compared with other four schemes under Data
Mining and Web Search load, respectively. Note that under
Data Mining workload, since the flow sizes of 80% flows are
less than 100KB [2], the overall average FCT and short flow’s
FCT are lower than that of Web Search workload. Meanwhile,
as the long flow size in Data Mining workload is larger, the
long flow’s average FCT and overall 99th FCT are higher than
that of Web Search workload.

C. Measurement Accuracy of Leaf-to-Leaf Latency
In this test, we evaluate the measurement accuracy of leaf-

to-leaf latency. We generate 10,000 flows according to Poisson
processes. The flow sizes vary from 10KB to 5MB. The flows
are sent from randomly selected senders to receivers. The

topology settings are as same as that in Section VI-B. In
order to analyze the measurement accuracy, we compare the
measured leaf-to-leaf latency with the real one.

Firstly, the flows arrive at 100 flows/sec and the flow size
obeys heavy-tail distribution [16] with parameter α as 1.5.
Fig. 12(a) shows that the estimated one-way delay is very
approximate to the real one measured from the NS2 trace
file. Furthermore, we change the flow distribution and use
R-Square as evaluation metric. R-Square is between 0 and
1, and the values closer to 1 indicates more accurate results.
Fig.12(b) shows the results under Poisson distribution with
the mean arrival rate from 100 flows/sec to 2500 flows/sec.
Fig.12(c) shows R-Square under various power α of heavy-tail
distribution of flow size. The larger power means more heavy-
tail flow size. As shown in Fig.12, all R-Squares between the
estimated leaf-to-leaf latency and the real one are more than
0.94, meaning that AG obtains accurate leaf-to-leaf latency
with very small estimation error.

D. Impact of Sample Intervals
To capture the accurate global congestion states on multiple

paths, AG needs to periodically measure the path latency
to differentiate between congested and uncongested paths. A
proper value of timeout T will obtain good tradeoff between
high accuracy and low overhead. A simple method is to use
a fixed and empirical value, such as 500µs. However, under
real network, an optimal T should enable the switch to catch
every change of congestion state, such as from congested to
uncongested state or vice versa. Thus, we can use the statistical
method to adaptively obtain a more accurate T .

Specifically, we periodically collect a certain number of
RTT samples of each path during the predefined time interval.
For example, we measure the RTT of each packet in the 1st
second in every one hour. If a RTT sample at one time point is
larger than the average RTT, the path at this time is considered
as congested. Otherwise the path is uncongested. Then, we
calculate the average time period Tavg between state change
(i.e., the path changes from congested to uncongested state,
or vice versa). For multiple paths, we pick out the minimum
value Tmin from Tavg in all paths to represent the change rate
of network state. Finally, according to Nyquist’s theorem, the
sampling period T is set as 0.5Tmin.

Next, we conduct the test to evaluate the parameter setting
of sampling period T . We use a fixed T as 100µs, 500µs, 1ms,
and 0.5Tmin. In this test, we use variation of congestion state
at the beginning 10ms to determine Tmin. In Fig.13, as the
sampling timeout becomes greater, the interval between two
adjacent sampling gets larger, AG misses some variations of
network state, thus leading to the performance losses. On the

100us
500us

1ms
0.5Tmin

AF
CT

 (m
s)

0

5

10

15

Load
0.4 0.6 0.8

(a) Overall AFCT

100us
500us

1ms
0.5Tmin

99
th

 F
CT

 (m
s)

0

50

100

150

Load
0.4 0.6 0.8

(b) Overall 99th FCT

100us
500us

1ms
0.5Tmin

95
th

 F
CT

 (m
s)

0

20

40

60

80

Load
0.4 0.6 0.8

(c) Overall 95th FCT

100us
500us

1ms
0.5Tmin

50
th

 F
CT

 (m
s)

0

0.5

1.0

1.5

2.0

Load
0.4 0.6 0.8

(d) Overall 50th FCT

Fig. 13. Parameter Setting Analysis.

LetFlow
Presto
RPS

ECMP
AG

N
or

m
al

iz
ed

 A
ve

ra
ge

 F
CT

0.4

0.8

1.2

1.6

of Congested Path
0 1 2 3 4

(a) Small Flow (<100KB) AFCT

LetFlow
Presto
RPS

ECMP
AG

N
or

m
al

iz
ed

 A
ve

ra
ge

 F
CT

0.4

0.8

1.2

1.6

of Congested Path
0 1 2 3 4

(b) Long Flow (>1MB) AFCT

LetFlow
Presto
RPS

ECMP
AG

N
or

m
al

iz
ed

 9
9th

 F
CT

0.4

0.8

1.2

1.6

of Congested Path
0 1 2 3 4

(c) Overall 99th FCT

LetFlow
Presto
RPS

ECMP
AG

N
or

m
al

iz
ed

 A
ve

ra
ge

 F
CT

0.4

0.8

1.2

1.6

of Congested Path
0 1 2 3 4

(d) Overall AFCT

Fig. 14. Performance with Varying Number of Congested Paths.

contrary, our method can obtain a more accurate sampling
timeout through statistic analysis, hence AG can perceive
more variations of network state, thus achieving the best
performance as a whole.

Nonetheless, the overhead still exists, although the statistic
method gets the best performance compared to the fixed T .
Therefore, in this paper, we use the sampling timeout of 500us
to run the evaluation tests to reduce the overhead with few
performance losses.

VII. TESTBED EVALUATION

In this section, we test the performance of AG through
Mininet which is a network emulation system with high
fidelity on Linux kernel [19], [20]. Compared to production
data center networks, Mininet has smaller test scale and only
supports tens of Mbps link bandwidth due to the limitation of
single-machine CPU [20]. However, Mininet has been shown
to faithfully reproduce implementation with high fidelity.
Moreover, its codes and test scripts can be deployed into a real
production network [19]. Thus, it is widely used as a flexible
testbed for networking experiments [21], [22]. Therefore, we
develop a Mininet-based prototype of AG with P4, which is
a high-level language for programming protocol-independent
packet processors [23]. P4 offers APIs for the software switch
to parse packets and match header fields, and guides the
switch to operate corresponding behaviors such as dropping
and forwarding packet.

Specifically, we use header ipv4 t to declare an IPv4 header
and record five-tuple information of the arrival packet. Each
flow is identified by hash() function, which adopts CRC16
algorithm to calculate the hash value of five-tuple information.
We use the built-in metadata ingress global timestamp to
obtain the time when packet arrives at source leaf switch. We
add an optional field hdr.tcp.optional into TCP header to
record the arrival time. Similarly, when receiving the packet,
the destination leaf switch reads the recorded time in the TCP
header and subtracts it from the current time. Finally, the
calculated path latency is reordered in the header of data or
ACK packet on the reverse direction.

With the measured path delay, the source leaf switch calcu-
lates the optimal switching granularity. We use two registers to
record and compare the optimal switching granularity and the
packet train length. If the packet train length is smaller than the
optimal switching granularity, the packet train is not rerouted.
Otherwise, the flow is rerouted to another random output port
specified in egress spec by the random() function.

In this test, we implement AG on P4 16. We use Mininet
2.1.0 on a Ubuntu 16.04 LTS virtual machine to create a Leaf-
Spine topology with 24 hosts connected by 2 leaf switches
and 8 spine switches. There are 8 equal-cost paths between
the leaf and spine switches. BMv2 is installed as the software
programmable switch. Each port has a 100 packet buffer. We
set link bandwidth to 20Mbps and the round trip propagation
delay to 1ms, respectively [20]. We generate 80 flows with
90% small flows and 10% large flows following a Poisson
process. We compare the performance of AG with ECMP
[3], RPS [6], Presto [7] and LetFlow [4] with the number
of congested paths varying from 0 to 4. We set the basic RTT
of the congested path as 4ms to produce delay asymmetry.

We normalize the test results of ECMP, RPS, Presto and
LetFlow to that of AG. Fig. 14(a) and Fig. 14(b) show the
normalized AFCT of short flows and long flows under different
numbers of congested paths, respectively. AG reduces the
AFCT of short flows and long flows by up to 31% and
24% over the other schemes, respectively. The performance of
the fine-grained schemes such as RPS and Presto deteriorates
with the increasing number of congested path, because more
number of congested paths aggravates the packet reordering,
which triggers the reduction of congestion windows and leads
to more spurious retransmission and bandwidth wastage. For
the coarse-grained schemes such as ECMP and LetFlow, the
FCT performances become worse due to the under-utilization
of link resource under less number of congested paths. ECMP
and LetFlow suffer from the randomness and inflexibility in
rerouting flows. For LetFlow, once a flow is hashed to the path
with large delay, the flow may be hard to be switched to other
good paths due to small time gap between packets.

Fig. 14(c) shows that, compared with other four schemes,

the improvement of AG in tail FCT is around ∼18%-29%.
Overall, AG has about ∼17%-27% AFCT improvements as
shown in Fig. 14(d). The reason that AG reduces the average
and tail FCT is two-fold. On the one hand, AG makes switch-
ing decisions according to the global network congestion.
On the other hand, AG calculates an optimal granularity in
load balancing for different congestion conditions, effectively
alleviating packet reordering and link under-utilization.

AG is implemented on the switch with computing overhead.
To evaluate the system overhead of AG, we measure the CPU
and memory utilization ratio at the leaf switch with various
traffic load as shown in Fig. 15. We conduct a Leaf-Spine
topology with 24 hosts connected by 2 leaf switches and 8
spine switches. We generate 100 flows following a Poisson
process with different arrival rates to change the traffic load.
Fig.15 (a) shows the CPU utilization of the leaf switch. RPS
achieves the lowest CPU utilization due to its simplicity in
spraying packets to all paths. Although AG needs to conduct
the packet train adjustment, it does not incur excessive CPU
overhead compared with other schemes. Fig.15 (b) shows that
even at 80% load, AG’s memory utilization is only 6.5%.

Load 0.2
Load 0.4
Load 0.6
Load 0.8

CP
U

Ut
ili

za
tio

n
(%

)

0

20

40

60

80

100

Comparison Scheme
AG ECMP Presto RPS LetFlow

(a) CPU Utilization

Load 0.2
Load 0.4
Load 0.6
Load 0.8

M
em

or
y

Ut
ili

za
tio

n
(%

)

0

2

4

6

8

10

Comparison Scheme
AG ECMP Presto RPS LetFlow

(b) Memory Utilization

Fig. 15. Overhead of the Leaf Switch with Different Schemes.

VIII. RELATED WORKS

To achieve high bisection bandwidth in modern data centers
organized in multi-rooted tree topologies, many load balancing
approaches are proposed. These mechanisms can be divided
into four categories according to different granularities.

The first category is the flow-based load balancing mech-
anisms. ECMP picks paths according to the five-tuple in
packet header. WCMP [24] adds weights to different paths
according to the path conditions. Hedera [21] and MicroTE
[25] use a central controller to reroute the long flows to non-
congested paths. Freeway [26] schedules the short and long
flows separately on parititioned paths. Hermes [9] makes the
switching decisions at packet level for long flows according to
congestion conditions, and reroutes the short flows at a flow
level. Due to the inflexibility feature, however, the flow-based
mechanisms may lead to congestion and load imbalance.

To address the above problems, many packet-based schemes
are proposed to make full use of multiple paths. RPS [6] ran-
domly forwards packets of a flow to all paths at switches. DRB
[12] chooses a round-robin method to transmit the arriving
packets. Detail [27] performs the packet-level load balancing
to reduce the tail latency. DRILL [8] compares two random
output ports and the least-loaded port in the last round, and
chooses the one with least queueing length to forward a packet.

Though the above packet-based load balancing mechanisms
can effectively improve the link utilization, they easily incur
high degree of packet reordering under asymmetric topology.
QDAPS [28] selects the output port for each packet based on
the queueing delay of the last arriving packet for the same
flow to avoid packet reordering. CAPS [29] encodes the short
flows and spreads the packets of short flows to all path.

The third one is to balance load at the level of TCP
Segmentation Offload (TSO) unit, called flowcell. Presto [7] is
a typical flowcell-based mechanism which sprays the flowcells
to all available paths in a round-robin style. Luopan [14] also
operates at flowcell granularity. It periodically samples paths
for each destination switch and selects the least congested one
for flowcells. Since a fixed switching granularity still lacks
enough flexibility and adaptability, it is hard to achieve the
optimal performance under highly dynamic network.

The last category balances traffic based on the flowlet, which
is a burst of packets separated from other bursts by a fixed time
gap. CONGA [5] estimates the real-time congestion on each
path and reroutes flowlets to the least load one. HULA [18]
tracks global congestion by using programmable data planes.
Clove [30] uses the vitual switch to dictate the path of each
flowlet. LetFlow [4] picks a random path for each flowlet.
ALB [31] reroutes flowlets based on accurate one-way delay.
Unfortunately, the proper value of flowlet gap is hard to choose
in advance. The multiple paths may be under-utilized with a
large flowlet gap, while the packet reordering problem will
occur frequently with a small one.

All above load balancing schemes with different granular-
ities perform well in a certain network scenario, but none of
them takes the asymmetric degree of multiple paths into con-
sideration. Compared with these schemes, AG is a proactive
and adaptive load balancer that adjusts switching granularity
based on the asymmetric degree of multiple paths, achieving
good performance under different network scenarios.

IX. CONCLUSION

We present the design and evaluation of AG, a simple load
balancing scheme that adaptively adjusts switching granularity
under asymmetric topology according to the latency-based
congestion conditions of all paths. AG achieves high perfor-
mance by alleviating packet reordering under large degrees of
topology asymmetry and obtaining high link utilization under
low degrees of topology asymmetry. We present the model
analysis on how to obtain the optimal switching granularity
according to the asymmetric degree. We evaluate and compare
AG with the state-of-the-art load balancing schemes through
both NS2 simulations and small-scale Mininet testbed. The
experimental results demonstrate that AG reduces mean and
tail FCT significantly without any changes to the TCP/IP
protocol stack at end-hosts.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science
Foundation of China (61872387, 61572530, 61872403), CER-
NET Innovation Project (Grant No. NGII20170107).

REFERENCES

[1] M. Al-Flare, A. Loukissas, A. Vahdat. A scalable, commodity data center
network architecture, in Proc. ACM SIGCOMM, 2008.

[2] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, S. Sengupta. VL2: a Scalable and Flexible Data
Center Network, in Proc. ACM SIGCOMM, 2009.

[3] C. Hopps. Analysis of an Equal-Cost Multi-Path Algorithm, in RFC
2992.

[4] E. Vanini, R. Pan, M. Alizadeh, P. Taheri, T. Edsall. Let it Flow: Resilient
Asymmetric Load Balancing with Flowlet Switching, in Proc. USENIX
NSDI, 2017.

[5] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu, A.
Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav, G. Varghese. CONGA:
Distributed Congestion-Aware Load Balancing for Datacenters, in Proc.
ACM SIGCOMM, 2014.

[6] A. Dixit, P. Prakash, Y. C. Hu, R. R. Kompella. On the Impact of Packet
Spraying in Data Center Networks, in Proc. IEEE INFOCOM, 2013.

[7] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, A. Akellay. Presto:
Edge-based Load Balancing for Fast Datacenter Networks, in Proc.
ACM SIGCOMM, 2015.

[8] S. Ghorbani, Z. Yang, P. B. Godfrey, Y. Ganjali, A. Firoozshahian.
DRILL: Micro Load Balancing for Low-latency Data Center Networks,
in Proc. ACM SIGCOMM, 2017.

[9] H. Zhang, J. Zhang, W. Bai, K. Chen, M. Chowdhury. Resilient
Datacenter Load Balancing in the Wild, in Proc. ACM SIGCOMM,
2017.

[10] S. Kandula, D. Katabi, S. Sinha, A. Berger. Dynamic Load Balancing
Without Packet Reordering, ACM SIGCOMM Computer Communica-
tion Review, 2007, 37(2): 53-62.

[11] M. Alizadeh, T. Edsall. On the Data Path Performance of Leaf-Spine
Datacenter Fabrics, in Proc. IEEE HOTI, 2013.

[12] J. Cao, R. Xia, P. Yang, C. Guo, G. Lu, L. Yuan, Y. Zheng, H. Wu, Y.
Xiong, D. Maltz. Per-packet Load-balanced, Low-latency Routing for
Clos-based Data Center Networks, in Proc. ACM CoNEXT, 2013.

[13] K. Lee, J. Eidson. IEEE-1588 standard for a precision clock synchro-
nization protocol for networked measurement and control systems, in
34th Annual Precise Time and Time Interval (PTTI) Meeting, 2002.

[14] P. Wang, G. Trimponias, H. Xu, Y. Geng. Luopan: Sampling based Load
Balancing in Data Center Networks, IEEE Transactions on Parallel and
Distributed Systems, 2019, 30(1): 133-145.

[15] R. Miao, H. Zeng, C. King, J. Lee, M. Yu. SilkRoad: Making Stateful
Layer-4 Load Balancing Fast and Cheap Using Switching ASICs, in
Proc. ACM SIGCOMM, 2017.

[16] Q. Huang, X. Jin, P. P. C. Lee, R. Li, L. Tang, Y. Chen, G. Zhang.
SketchVisor: Robust Network Measurement for Software Packet Pro-
cessing, in Proc. ACM SIGCOMM, 2014.

[17] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B.
Prabhakar, S. Sengupta, M. Sridharan. Data Center TCP (DCTCP), in
Proc. ACM SIGCOMM, 2010.

[18] N. Katta, M. Hira, C. Kim, A. Sivaraman, J. Rexford. HULA: Scalable
Load Balancing Using Programmable Data Planes, in Proc. ACM SOSR,
2016.

[19] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, N. McKeown. Re-
producible Network Experiments Using Container-Based Emulation, in
Proc. ACM CoNEXT, 2012.

[20] H. Xu, B. Li. Repflow: Minimizing Flow Completion Times with
Replicated Flows in Data Centers, in Proc. IEEE INFOCOM, 2014.

[21] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, A. Vahdat.
Hedera: Dynamic Flow Scheduling for Data Center Networks, in Proc.
USENIX NSDI, 2010.

[22] A. Khurshid, X. Zou, W. Zhou, M. Caesar, P. B. Godfrey. Veriflow:
Verifying Network-Wide Invariants in Real Time, in Proc. USENIX
NSDI, 2013.

[23] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C.
Schlesinger, D. Talayco, A. Vahdat, G. Varghese, D. Walker. P4: Pro-
gramming Protocol-Independent Packet Processors, ACM SIGCOMM
Computer Communication Review, 2014, 44(3): 87-95.

[24] J. Zhou, M. Tewari, M. Zhu, A. Kabbani, L. Poutievski, A. Singh, A.
Vahdat. WCMP: Weighted Cost Multipathing for Improved Fairness in
Data Centers, in Proc. ACM EuroSys, 2014.

[25] T. Benson, A. Anand, A. Akella, M. Zhang. MicroTE: Fine Grained
Traffic Engineering for Data Centers, in Proc. CoNEXT, 2011.

[26] W. Wang, Y. Sun, K. Salamatian, Z. Li. Adaptive Path Isolation for
Elephant and Mice Flows by Exploiting Path Diversity in Datacenters,
IEEE Transactions on Network and Service Management, 2016, 13(1):
5-18.

[27] D. Zats, T. Das, P. Mohan, D. Borthakur, R. Katz. DeTail: Reducing
the Flow Completion Time Tail in Datacenter Networks, in Proc. ACM
SIGCOMM, 2012.

[28] J. Huang, W. Lv, W. Li, J. Wang, T. He. QDAPS: Queueing Delay Aware
Packet Spraying for Load Balancing in Data Center, in Proc. IEEE ICNP,
2018.

[29] J. Hu, J. Huang, W. Lv, Y. Zhou, J. Wang, T. He. CAPS: Coding-based
Adaptive Packet Spraying to Reduce Flow Completion Time in Data
Center, in Proc. IEEE INFOCOM, 2018.

[30] NN. Katta, A. Ghag, M. Hira, I. Keslassy, A. Bergman, C. Kim, J.
Rexford. Clove: Congestion-Aware Load Balancing at the Virtual Edges,
in Proc. ACM CoNEXT, 2017.

[31] Q. Shi, F. Wang, D. Feng, W. Xie. ALB: Adaptive Load Balancing Based
on Accurate Congestion Feedback for Asymmetric Topologies, in Proc.
IEEE IWQoS, 2018.

