
Perseverance-Aware Traffic Engineering in Rate-
Adaptive Networks with Reconfiguration Delay

Shih-Hao Tseng
Division of Engineering and Applied Science

California Institute of Technology
Pasadena, California 91125, U.S.A.

shtseng@caltech.edu

Abstract—Expensive optical fibers provide connectivity for
wide-area networks. Nowadays, the fibers are operated in a much
conservative manner. By adaptively reconfiguring the fibers to
exploit its signal quality, a recent proposal demonstrates a sig-
nificant increase of optical link capacity. Such a reconfiguration
currently accompanies a non-ignorable delay, during which the
reconfigured link is not accessible, and the mentioned approach
trades off the final throughput with the induced churn during
the transition. This scheme can result in high traffic disturbance
during the reconfiguration.

To overcome the drawback of the simple churn-based update,
we study the rate adaptation planning (RAP) problem under
reconfiguration delay. We propose a multiple step planning with
perseverance constraints. This approach leads to a smoother
transition, but the optimal plan is shown NP-hard without con-
stant factor approximation (unless P=NP). Therefore, we develop
an efficient LP-based heuristic algorithm. Extensive simulations
show that the algorithm gives 40− 50% higher throughput than
the no-adaptive-link case. Also, the transition is much smoother:
the resulting traffic fluctuation is only 40 − 50% of the existing
churn-based approach.

I. INTRODUCTION

The core of modern wide-area networks consists of ex-
pensive optical fibers [1]–[3]. The significant cost of those
fibers incentivizes the network operators to utilize them as
efficiently as possible. For example, Owan [1] reconfigures
optical WAN topology to improve bulk traffic transfers and
[4] presents an online scheduling algorithm to minimize the
aggregated flow completion time. These methods optimize
network performance by manipulating fixed capacity fibers.

Besides providing a fixed capacity, the optical fibers can
transmit beyond its capacity – if the signal quality allows.
Recently, the optical links support transmission at 100 Gbps
[3]. However, with an appropriate modulation and a suitable
signal-to-noise ratio (SNR), they can potentially send at a
much higher rate (up to tens of Tbps) [5]. A recent study [3]
confirms that the measured SNR of the optical links exceeds
the requirement for 100 Gbps by a large extent. Therefore,
[3] proposes RADWAN, which reconfigures the modulations
of the optical links to exploit the SNR margin and augment
the link capacity. By doing so, RADWAN boosts the overall
capacity by more than 100 Tbps.

The key technology that enables the modulation reconfig-
uration is the bandwidth variable transceivers (BVTs) [6].

State-of-the-art BVTs can switch among multiple modulation
formats, but the reconfiguration takes a non-ignorable de-
lay during which the BVTs cannot send traffic through the
fibers. Therefore, RADWAN considers churn, which is the
amount of affected traffic during the reconfiguration delay.
RADWAN compensates the final throughput with the induced
churn. In other words, RADWAN tries to minimize the traffic
disturbance during the transition when optimizing the final
performance.

A drawback of such a churn-based update is fluctuation.
RADWAN performs all link reconfiguration at the same time
and reroutes the affected traffic. If the network is heavily
loaded, the success of the reroute may not be guaranteed. In
that case, we lose the churn, and the traffic suffers through-
put drop. To avoid such a disturbance, the system operator
could try to shorten the reconfiguration delay or spare some
bandwidth for transient reroute as suggested in [7]. Reducing
the reconfiguration delay can be challenging when multiple
optical links are involved as remarked in [1]. On the other
hand, reserving optical bandwidth for transition hurts the
performance of the optical core as the system cannot fully
utilize its available link capacity.

A. Contribution and Organization

To deal with traffic fluctuation, we propose to include some
intermediate steps as suggested by SWAN [7], which leverages
the transitional stages to mitigate transient congestion. Also,
we introduce the idea of perseverance. Perseverance limits
the relative traffic variation between two consecutive steps.
By controlling the perseverance level, we can balance the
minimum traffic ratio throughout the transition and the speed
of converging to the best throughput.

We formulate the multi-step perseverance-aware reconfig-
uration as the rate adaptation planning (RAP) problem. By
depicting a translation to the mixed integer linear programming
(MILP) form, we reveal a computation-demanding way to
obtain the optimal solution. Although a polynomial-time algo-
rithm would be preferable, we negate that pursuit by proving
that the problem is NP-hard and there exists no constant factor
approximation algorithm unless P=NP. As such, we develop
linear programming (LP) based heuristic to approach RAP.
Through simulations, we show that the heuristic enjoys the978-1-7281-2700-2/19/$31.00 2019 © IEEE

benefit of adaptive links without suffering the high fluctuation
as the churn-based approach.

We organize the paper as follows. In Section II, we first
describe the rate-adaptive networks and the existing update
metric – churn. Since churn-based update suffers traffic fluc-
tuation, we then introduce the idea of perseverance. Section
III introduces the notation to formulate our rate adaptation
planning (RAP) as a discrete-time control problem. We then
demonstrate how to solve RAP by considering its equivalent
MILP formulation. In Section IV, we show the NP-hardness of
RAP, which motivates us to develop an LP-based heuristic to
approach RAP in Section V, and it is evaluated along with the
optimal solution and RADWAN through extensive simulations
in Section VI. Finally, we conclude the paper in Section VII.

II. BACKGROUND AND MOTIVATION

We start the section with the basics and the difficulty of
operating a rate-adaptive network, followed by the existing
method, RADWAN [3], and its proposed metric churn. We
then identify the drawbacks of a churn-based method and
illustrate how a perseverance-aware reconfiguration plan could
lead to a smoother update.

A. Rate-Adaptive Networks

Modern core networks consist of optical fiber links with
fixed capacities. The fixed capacity is essentially a lower
bound on the real capacity that the optical link can support.
The real capacity is determined by the applied modulation
and the experienced SNR: A modulation leading to higher
capacity requires higher SNR. Although the SNR may vary,
the network operator chooses the modulation based on a
conservative estimation of SNR so that a fixed capacity is
guaranteed.

In practice, the measured SNR is much higher than the
requirement [3]. Therefore, the network operator could po-
tentially operate the links with more aggressive modulations
to commit to a larger fixed link capacity. Also, when the SNR
drops, the network operator could prevent a total blackout of
the link by switching to a low-rate modulation which can
sustain under lower SNR. This idea leads to the design of
RADWAN [3], a rate-adaptive network.

The main obstacle of operating such a rate-adaptive network
is the reconfiguration delay of the links. During the reconfig-
uration, a link cannot carry any traffic until a new modulation
is negotiated at both sides of the link. Without reconfiguration
delay, a link can enjoy boosted capacity right after the update,
while a non-zero reconfiguration delay prevents the traffic
utilizing the link. As a result, the network operator needs to
mitigate the impact of an update on the throughput.

Given a procedure to update the links in a rate-adaptive
network, we have two different metrics that can evaluate its
impact on the throughput: churn and perseverance. Churn
quantifies the total affected amount and perseverance concerns
the variation throughout the procedure. In the following sub-
sections, we illustrate the differences between the two metrics.

B. One-Shot Update and Churn

A natural way to evaluate the reconfiguration impact is to
consider the total traffic on the reconfigured links, which is
named churn in RADWAN. This quantity reflects the affected
traffic that needs to be handled (or dropped) during a one-
shot update. Taking into account the churn, RADWAN aims
to maximize the final throughput after adjusting the link
capacities while minimizing the induced churn during the
update, which is written as

max (final throughput)− ε · (churn) (1)

where ε is the trade-off factor. The network operator can alter
ε to prefer higher final throughput (small ε) or lower churn
(larger ε).

The basic idea behind such a churn-based approach is to
mitigate the impact caused by the one-shot update. However,
the one-shot update leads to considerable traffic fluctuation
during the reconfiguration. Also, this approach tends to allow
large churn when a large final throughput is achievable. We
address these issues in the following subsection.

C. Multi-Step Reconfiguration and Perseverance

Instead of updating all the links in one shot, we can update
them in batches to reduce the traffic fluctuation. To do so,
we introduce some intermediate steps to form a multi-step
reconfiguration plan as in SWAN [7], which utilizes additional
steps to prevent transient congestion.

Given a multi-step plan, we can consider not only the total
impact (as churn describes) but also the smoothness of the
update. To achieve a smoother transition, we introduce the
idea perseverance to regulate the transient throughput drop. In
particular, we define perseverance level to be the maximum
allowed throughput drop between two consecutive steps. By
maintaining a perseverance level throughout the update, we
rule out the sudden blackout of traffic that might happen in a
churn-based solution.

We use Fig. 1 to illustrate the difference between churn
and perseverance. Two different procedures are applied to the
flows in a network, resulting in different discrete throughput
processes. Both processes start with the same initial throughput
and end at the same final state. The main difference is
that the above churn-based process shifts to the final state
swiftly with more considerable throughput fluctuation. The
below procedure, however, controls the traffic variation rate
throughout the transition. More specifically, it maintains a
perseverance level of 0.6 that allows throughput to drop no
more than 40% for any two consecutive steps.

To incorporate perseverance into consideration, we consider
an optimization problem as follows, which is different from
RADWAN’s churn-based proposal (1):

max (final throughput in T steps)
s.t. (perseverance level ≥ ρ) (2)

One advantage of such a perseverance-aware optimization is
that a higher achievable final throughput does not cause the

churn

T
hr

ou
gh

pu
t

Step
0 1 2 3 4

≤ 40%

≤ 40%

≤ 40%

perseverance

T
hr

ou
gh

pu
t

Step
0 1 2 3 4

Fig. 1. The difference between churn and perseverance. Churn measures
the total impact, while perseverance regulates to the relative variation be-
tween steps (the maximum allowed throughput drop at the next step). The
perseverance-aware traffic engineering schedules the reconfiguration of the
links so that the traffic experiences smaller fluctuation during the update
comparing to the churn-based one-shot update.

perseverance level = 0

perseverance level = 0.5

initial one-shot final

step 1 step 2

Fig. 2. We can include intermediate steps and maintain a perseverance level
to mitigate the traffic disturbance during the reconfiguration. The above one-
shot update augments all the link capacities from 1 to 2 at once. As a result,
all traffic (gray) on the corresponding links is interrupted. Instead, by adding
two intermediate steps, the below plan could manifest a perseverance level
0.5 throughout the update, which disturbs less traffic (at most half of the
throughput).

degradation of the perseverance level, while in (1), a higher
achievable final throughput could tolerate a larger churn under
a fixed ε.

We demonstrate this approach by an example shown in Fig.
2, in which each link has capacity 1 and can be augmented to
2. The augmentation takes 1 unit reconfiguration time. A flow
sends 2 unit traffic (marked gray) initially from left to right.
If we update the links according to RADWAN (1), we will
prefer a one-shot update as the above one in Fig. 2 when the
trade-off factor ε ∈ [0, 1]. However, if we consider a multi-
step solution using (2) with T = 3 and ρ = 0.5, we will find
some solution as the below one in Fig. 2. This plan prevents
transient network blackout and induces less traffic disturbance.

Fig. 2 shows that a perseverance-aware reconfiguration plan
can lead to a much smoother transition than a simple churn-

based solution. As a result, we investigate in the following
context how to update under perseverance constraints.

III. FORMULATION

In this section, we first formulate the perseverance-aware
update problem, and then we develop methods to derive the
update plan later. We start the section with our notation and
model. The rate adaptation planning (RAP) problem is then
formulated in Section III-C as a discrete-time control problem.
In Section III-D, we show how to translate the control problem
into a mixed integer linear program (MILP), which can be
solved by some MILP solvers.

A. Notation

We denote by Z the set of integers and Z+ the positive
integers. [a, b] is an interval between a and b, while {a, b}
only consists of a and b. [a, b]Z refers to the set of integers
within [a, b]. For brevity, we abbreviate i ∈ [1, I]Z as i ∈ I for
some integer I . Given a set S, we denote by |S| the cardinality
of S.

B. Model

We model the network by a graph G = (V,L) where
V is the set of nodes and L is the set of directed links.
Each directed link l ∈ L offers an alterable capacity cl ≥ 0
based on its current modulation mode ml ∈ Ml, where Ml

is the set of all available modulation modes for the link. To
switch to a different modulation mode, the link undergoes
a reconfiguration phase when it is down (cl = 0). Every
modulation mode m ∈ Ml requires a minimum signal-noise
ratio (SNR) SNRmin

m to provide the corresponding capacity
cl[ml] ≥ 0. The larger the capacity, the higher the minimum
SNR is required. If current SNR of the link (SNRl) is smaller
than the modulation requirement, the link is down.

During the reconfiguration, N flows, which are defined by
their source and destination, share the network. Each flow n ∈
N has a predetermined path set Pn to send from its source to
its destination. For each path p ∈ Pn, we denote by xnp the
sending rate on the path. Through the paths, flow n sends at
an aggregate rate

xn =
∑
p∈Pn

xnp . (3)

We say l ∈ p if the path p goes through the link l, and we
denote the aggregate traffic on link l by

yl =
∑
n∈N

∑
l∈p:p∈Pn

xnp . (4)

The capacity of a path is defined as its bottleneck link capacity.

C. Discrete-Time Control Formulation

Assuming each reconfiguration takes one unit time, we for-
mulate the rate adaptation problem as a discrete-time control
problem with a finite horizon T , which is determined by the
network operator according to its computation and deployment
ability. We associate a parenthesized time (step) t ∈ T after
each variable to refer to its value at time (step) t. Also, we

denote by t = 0 the initial state. For example, xn(T) is the
aggregate sending rate of flow n at time T , and yl(t) is the
aggregate traffic on link l at time t. The same rule applies to
xnp (t), cl(t), and ml(t). Meanwhile, the aggregate rules (3) and
(4) are maintained for each time. Given that reconfiguration
time is relatively short, we assume that the N flows do not
change before the reconfiguration finishes.

The goal of the rate adaptation planning (RAP) problem is
to find the sending rate xnp (t) and the modulations ml(t) to
maximize the overall throughput at the end of the horizon.
We can write RAP as a discrete-time control problem with
the objective

RAP = max
∑
n∈N

xn(T)

subject to the capacity constraints (5), perseverance constraints
(6), initial constraints (the parameter values at t = 0), and
some other feasibility constraints (such as xnp (t) ≥ 0 and
ml(t) ∈Ml).

The capacity constraints are as follows

yl(t) ≤ cl(t) (5)

for all l ∈ L and t ∈ T , where

cl(t) =

cl[ml(t)], if
SNRmin

ml(t)
≤ SNRl, and

ml(t− 1) = ml(t);

0, otherwise.

Here, cl(t) is non-zero only when the chosen SNR is feasible
and the links l is not currently under reconfiguration (changing
the modulation ml).

The perseverance constraints regulate how much traffic we
should preserve during the reconfiguration. Given a persever-
ance level ρ ∈ [0, 1], the perseverance constraints require

ρxn(t− 1) ≤ xn(t) (6)

for all n ∈ N and t ∈ T . Without the perseverance constraints
(or equivalently when ρ = 0), the naive solution to RAP
would be simply reconfiguring all the links at once to their
best possible capacity according to the current SNR.

It is not trivial to see how we can approach RAP. We
demonstrate in the following subsection that RAP can also be
formulated as a mixed integer linear program (MILP) which
allows further investigation.

D. Mixed Integer Linear Programming Formulation

RAP in the discrete-time control form is complicated,
especially when we can potentially modify the modulation of
the links multiple times before T . The following optimality
property allows us to consider only the reconfiguration plans
which change the modulation of each link at most once. As
such, we only need to decide for each link when to reconfigure.
This leads to a much simpler MILP formulation.

Lemma 1. If there exists an optimal solution of RAP, there
must exist another one such that each link either keeps its

modulation at all times or is reconfigured at most once to the
highest possible capacity.

Proof. We prove the lemma by construction. Let{
xnp (t),ml(t)

}
(for all n ∈ N, p ∈ Pn, l ∈ L, t ∈ T ,

omitted hereafter for brevity) be an optimal solution, we
construct the other solution

{
x̂np (t), m̂l(t)

}
as follows: The

sending rate stays the same (xnp (t) = x̂np (t)). For each link l
that is first reconfigured at time t′ ∈ T , we define

m̂l(t) =

{
ml(0), for all t < t′;

mmax
l , for all t ≥ t′.

where

mmax
l = argmax

{
m : m ∈Ml,SNRmin

m ≤ SNRl

}
is the modulation that gives the highest possible capacity. If
the link l stays the same at all times in ml(t), so does m̂l(t).

It is easy to see that
{
x̂np (t), m̂l(t)

}
satisfies the capacity

constraints (5) since m̂l(t) provides higher (or equal) capacity
than ml(t). The perseverance constraint (6) is also satisfied
as x̂np (t) = xnp (t). In addition, both solutions have the same
objective value. Therefore,

{
x̂np (t), m̂l(t)

}
is also an optimal

solution, and the lemma is proven.

Lemma 1 suggests that we can simply consider three link
states only: before, under, and after reconfiguration. Based on
the observation, we introduce the auxiliary integer variables
zl(t) for each link l, which indicate whether l has been
reconfigured (zl(t) = 1) or not (zl(t) = 0) at time t. By
definition, zl(t) is non-decreasing over t and zl(0) = 0.

Another implication from Lemma 1 is that we only need to
consider three possible link capacities: the original capacity,
the best possible capacity, or zero when the link is down.
Inspired by the fact, we define the minimum possible capacity
cmin
l and the maximum possible capacity cmax

l as follows.
The minimum possible capacity is the original capacity if
sustainable, or zero otherwise:

cmin
l =

{
cl[ml(0)], if SNRmin

ml(0)
≤ SNRl;

0, otherwise,

and the maximum possible capacity is given by

cmax
l = max

{
cl[m] : m ∈Ml,SNRmin

m ≤ SNRl

}
.

Without loss of generality, we define cmax
l = 0 if the

no modulation meets the criterion. By definition, we know
cmax
l ≥ cmin

l .
With the above definitions, the three link states at time t ∈ T

are corresponding to

before: zl(t− 1) = 0, zl(t) = 0, cl(t) = cmin
l ;

under: zl(t− 1) = 0, zl(t) = 1, cl(t) = 0;

after: zl(t− 1) = 1, zl(t) = 1, cl(t) = cmax
l .

Accordingly, we can rewrite the capacity constraints (5) as

yl(t) ≤ cmin
l (1− zl(t)) + cmax

l zl(t− 1) (7)

for all l ∈ L and t ∈ T .
Using the above transformation, we then reformulate RAP

as an MILP below.

max
∑
n∈N

xn(T) (RAP)

s.t. capacity constraints (7)
perseverance constraints (6)
initial constraints
xnp (t) ≥ 0 ∀t ∈ T, n ∈ N, p ∈ Pn (8)

zl(t− 1) ≤ zl(t) ∀t ∈ T, l ∈ L (9)
zl(t) ∈ {0, 1} ∀t ∈ T, l ∈ L

The feasibility constraints (9) ensure that zl(t) is non-
decreasing. Once we obtain the optimal solution to the MILP,
we can derive the corresponding optimal control solution by
setting the optimal sending rate and

ml(t) =

{
ml(0), if zl(t) = 0;

mmax
l , if zl(t) = 1,

for all t ∈ T . Since zl(t) corresponds to a modulation opera-
tion in the reconfiguration plan, we call it the configuration at
time t, or simply the configuration when referring to all t ∈ T .

IV. ANALYSIS

Although MILP solvers can solve RAP in the MILP form,
they may not solve it in polynomial-time. In the following
analysis, we show in Proposition 1 that it is hard to solve or
even closely approximate RAP in polynomial time. This result
justifies the need for good heuristics.

We then ask why RAP is hard to solve. We find that if
we relax the time horizon, with a mild assumption on the
available paths for each flow, it is possible to update all the
links in finite steps under perseverance constraints (Proposition
2 and Corollary 1). In other words, we can always reach the
optimal final throughput despite that the update sequence may
be extremely long. As computing and deploying a long update
sequence is not trivial, these results may lead to future research
on online reconfiguration algorithm. In this work, we will
focus on obtaining the reconfiguration plan in a given T .

Below, we begin our analysis with Proposition 1.

Proposition 1. RAP is NP-hard, and it cannot be approxi-
mated to a constant factor in polynomial time unless P=NP.

Proof. We prove the proposition by providing a polynomial-
time reduction from the maximum independent set (MIS)
problem to RAP. Since MIS is NP-hard without constant factor
approximation (unless P=NP), the proposition follows.

Given an MIS instance, e.g., the left graph in Fig. 3, we
transform each node to a source-destination pair representing
a flow as the right graph in RAP. The available path set Pn

of each flow n consists of one direct path (dashed) and some
other paths (solid). Each direct path goes through a link of
capacity equal to the number of MIS adjacent nodes. For each
edge in the MIS graph, we generate a pair of paths connecting

3 → 4 2 → 3

3 → 42 → 3

ρ

ρ

ρ

ρ

ρ

Fig. 3. We show in Proposition 1 that RAP is NP-hard by a polynomial-
time reduction from the maximum independent set (MIS) problem, which is
NP-hard without a constant factor approximation (unless P=NP).

the flows corresponding to the MIS endpoints and sharing one
link of capacity ρ.

We consider the RAP on the transformed graph with T = 2
and perseverance level ρ. At t = 0, only the dashed paths send
at the full rate. The SNRs change such that the best possible
capacities of the dashed links are augmented by 1.

The optimal solution to RAP maximizes the number of
reconfigured dashed links. Once a dashed link is reconfigured,
its carrying traffic occupies all shared links due to the perse-
verance constraint. As such, the flows that share a link with
the reconfigured flow cannot change their dashed link. Equiva-
lently, once an MIS node is chosen, i.e., with its corresponding
flow reconfiguring the dashed link, its neighboring MIS nodes
cannot be selected. Therefore, by choosing the MIS nodes
corresponding to the reconfigured RAP flows, solving RAP
leads to the optimal MIS solution.

Unless P=NP, Proposition 1 suggests that it is impossible
to design an approximation algorithm to RAP with a constant
factor performance guarantee. Therefore, we shift to find good
heuristics to approach RAP in Section V.

Although it is hard to determine the optimal solution in a
given horizon T , it is possible to find a feasible plan if T is
long enough. The following proposition and corollary reveal
that we can always reconfigure the network within finite steps
in the presence of alternative paths, despite the length of the
resulting plan.

Proposition 2. Suppose ρ < 1 and Pn contains at least 2 non-
zero capacity edge-disjoint paths for all n ∈ N . Starting with
a feasible initial state, there exists a finite step rate adaptation
plan to reconfigure any link l ∈ L.

Proof. We prove the proposition by the following naive strat-
egy: We keep shrinking the traffic by

xnp (t) = ρxnp (t− 1)

until we spare enough bandwidth to move all traffic out of the
link l.

Consider the non-zero capacity edge disjoint paths p1, p2 ∈
Pn where l ∈ p1 and let c′ > 0 be the capacity of path p2.
We define the shrinking step bound jnl as

jnl = argmin

{
j ∈ Z+ : ρj ≤ c′

c′ + cl

}
which is a finite number since ρ < 1. jnl upper bounds the
number of steps we need to shrink the original traffic to move
flow n out of link l. To see the reason, we compute the spare
bandwidth of p2 after shrinking. Pick an arbitrary link l′ ∈ p2,
we know after jnl shirking steps, the spare capacity of link l′

is given by

cl′ − yl′(jnl) = cl′ − ρj
n
l yl′(0)

≥ (1− ρj
n
l)cl′ ≥ (1− c′

c′ + cl
)c′ =

clc
′

c′ + cl

by the definition of jnl and that c′ is the capacity of p2.
Meanwhile, the total traffic on l is shrunk to

yl(j
n
l) = ρj

n
l yl(0) ≤

c′cl
c′ + cl

.

As such, it is feasible to move all the traffic from p1 to p2
after jnl steps.

Consequently, to move all the traffic out of link l, we need
to shrink the traffic by

jl = max {jnl : n ∈ N}

steps, which is finite as N is finite.

Corollary 1. Suppose ρ < 1 and Pn contains at least 2 non-
zero capacity edge-disjoint paths for all n ∈ N . Starting with
a feasible initial state, there exists a finite step rate adaptation
plan to reconfigure all links l ∈ L.

Proof. Proposition 2 suggests that we can reconfigure an
arbitrary link in jl steps. Therefore, we can reconfigure all
the links in sequence, taking at most

∑
l∈L

jl steps.

From the proof of Proposition 2, we can see that jl is
smaller when ρ is smaller. Correspondingly, the worst-case
horizon estimation

∑
l∈L

jl in Corollary 1 is also smaller. This

relationship matches the intuition: When ρ is smaller, we are
more willing to endure traffic fluctuation, and hence, a shorter
plan is possible.

V. ALGORITHMS

Since Proposition 1 suggests that we cannot approximate
RAP to a constant factor, we develop an LP-relaxation based
heuristic to approach RAP, as shown in Fig. 4. The main
idea is to find a feasible reconfiguration plan that respects
perseverance constraints and then maximize the usage of
available links at each step. To do so, we first study the
properties of feasible solutions to RAP to iteratively identify
step by step the links to update, to which we refer as a
configuration (Section V-A). Using the properties, we derive
a two-step LP and a greedy uprounding procedure in Section

V-B to compute the configuration for one step. Based on the
obtained feasible configurations, we assign the sending rates
of the flows to utilize the available links fully in Section V-C.
As such, we can obtain a work conserving reconfiguration plan
for RAP, and we summarize our algorithm in Section V-D.

A. Properties of Feasible Solutions

Before developing the heuristic, we first study the properties
of feasible solutions to RAP.

Lemma 2. If there exists a feasible solution to RAP, there
exists a feasible solution with the same objective value such
that zl(T) = zl(T − 1) for all l ∈ L.

Proof. Let zl be the existing optimal solution. We prove the
lemma by showing that setting zl(T) = zl(T − 1) is still
optimal.

If zl(T − 1) = 1, we know 1 ≥ zl(T) ≥ zl(T − 1) = 1,
and hence zl(T) = zl(T − 1).

If zl(T − 1) = 0 and zl(T − 1) 6= zl(T) = 1, the upper
bound in (7) is 0. By setting zl(T) = zl(T − 1), we can
augment the upper bound to cmin

l ≥ 0. Therefore, the original
xnp is still feasible and the objective value remains the same,
and the lemma is proven.

Lemma 2 allows us to find only zl(1) to zl(T − 1). The
next lemma reveals that any two consecutive steps in a feasible
solution satisfy a specific constraint set.

Lemma 3. For any feasible solution to RAP, it satisfies the
following constraint set:

capacity constraints (7)
xn(t) ≥ ρtxn(0), xn(t+ 1) ≥ ρxn(t) ∀n ∈ N (10)
initial constraints (given zl(t− 1))
feasibility constraints (8) and (9)
0 ≤ zl(t) ≤ 1, 0 ≤ zl(t+ 1) ≤ 1 ∀l ∈ L (11)

for all t = 1, . . . , T − 1.

Proof. For an arbitrary t = 1, . . . , T − 1, consider a feasible
solution consisting of xnp (t) and zl(t). We know zl(t), zl(t+
1) ∈ {0, 1}, and hence (11) is satisfied directly. Also, since

xn(t) ≥ ρxn(t− 1) ≥ ρ2xn(t− 2) ≥ · · · ≥ ρtxn(0),

the feasible solution satisfies (10) as well. As the other
constraints remain the same, we prove that the feasible solution
satisfies the constraint set.

B. Two Step Relaxation and Greedy Uprounding

The configurations zl(t) is the main obstacle toward ob-
taining a solution to the MILP. Therefore, we focus on how
to determine zl(t) for each t ∈ T . Our strategy is to fix zl(t),
step by step, in a greedy manner. To do so, we first consider
the following two-step LP.

max
∑
n∈N

xn(t+ 1) (2-step LP(t))

s.t. constraint set in Lemma 3

xn(1) ≥ ρxn(0) max
∑

n∈N

xn(2)

xn(2) ≥ ρ2xn(0) max
∑

n∈N

xn(3)

xn(3) ≥ ρ3xn(0) max
∑

n∈N

xn(4)

xn(4) ≥ ρ4xn(0) max
∑

n∈N

xn(5)

zl(1)

t = 1

zl(2)

t = 2

zl(3)

t = 3

zl(4)

t = 4

max
∑
t∈T

∑
n∈N

xn(t)

t = T = 5

xnp (1) xnp (2) xnp (3) xnp (4) xnp (5)

1

2

3

Fig. 4. Since RAP is NP-hard without constant factor approximation (unless P=NP), we propose the LP-based heuristic Algorithm 2 to approach RAP.
Algorithm 2 iteratively determines the configuration at time t (zl(t)) by 1 solving the two step LP with the initial state zl(t − 1) and then 2 using
Algorithm 1 to greedily reconfigure links. Once the configuration is fully determined, Algorithm 2 adopts the 3 work conservation objective to generate the
sending rate on each path xnp (t).

Lemma 3 puts that any feasible MILP solution to RAP
will also satisfy the constraints in 2-step LP(t). Therefore, our
strategy is to construct a feasible MILP solution by iterating
2-step LP(t) over time.

Since 2-step LP(t) does not necessarily give integer zl(t),
we use Algorithm 1 to upround zl(t). The idea is to rank
the links based on their relaxed zl(t) solution, or ẑl in the
algorithm. The closer zl(t) is to 1, the earlier we consider to
upround it. Starting with the initial configuration zl(t−1), we
try to upround the links with ẑl > 0 one at a time according
to the above strategy.

Algorithm 1: Greedy Upround
1: ẑl ← zl(t) for all l ∈ L.
2: zl(t)← zl(t− 1) for all l ∈ L.
3: for from large to small ẑl > 0 do
4: Upround the corresponding zl(t) to 1.
5: If 2-step LP(t) is infeasible, downround zl(t) to 0.
6: end for

C. Work Conserving Reconfiguration Plan

Given a configuration, there can be multiple plans with
different transient sending rates xnp (t) that all maximize the
final aggregate sending rate

∑
n∈N

xn(T). Throughout those

plans, we prefer the one that is work conserving, i.e., sending
as much as possible. To find a work conserving reconfiguration
plan, we can fix the configuration and try to maximize the total
sending rate at each step under the perseverance constraints.
This process can be done by optimizing the following objective∑

t∈T

∑
n∈N

xn(t), (12)

which is the sum of the total sending rate at each step, with
the given configuration under the same RAP constraint set.
Notice that this optimization also leads to the maximum final
throughput

∑
n∈N

xn(T) under the given configuration.

A similar concern applies to the optimal RAP, which can
give the optimal final throughput with low-performance tran-
sient steps. For example, in a one-shot reconfigurable scenario,
updating at the beginning yields the same final performance
as doing so at the end, although the former plan leads to
higher throughput in between. Ideally, a work conserving plan
should not procrastinate, and to avoid such procrastination, we
can optimize RAP twice: We first solve for the optimal final
throughput and fix it under the objective (12) to get the work
conserving optimal reconfiguration plan. This time we only
pin down the final throughput without fixing the configuration
and rely on the optimization solver to find the swiftest update
plan.

D. Linear Programming Based Heuristic

We develop our LP-based heuristic Algorithm 2 using the
components described in the previous sections. Starting with
zl(0) = 0, Algorithm 2 iterates the two step LP through all
time t = 1, . . . , T − 1 to get the uprounded zl(t). Using
the configuration formed by the uprounded zl(t), we solve
(12) for the work conserving reconfiguration plan. The whole
procedure is summarized in Fig. 4 and Algorithm 2, where
line 8 is inspired by Lemma 2.

From the structure of Algorithm 2, one may wonder if we
can derive an online version by iterating two step LP with both
zl(t) and xn(t) as the states, i.e., we replace xn(t) ≥ ρtxn(0)
by xn(t) ≥ ρxn(t−1) and feed the results to the next iteration.
In this way, the online algorithm does not need to know T
a priori, and we don’t need the full configuration to generate

Algorithm 2: LP-Relaxation Based Heuristic
1: zl(0)← 0 for all l ∈ L.
2: if T ≥ 2 then
3: for t = 1, . . . , T − 1 do
4: Solve 2-step LP(t).
5: Upround zl(t) by Algorithm 1.
6: end for
7: end if
8: zl(T)← zl(T − 1) for all l ∈ L.
9: Solve (12) based on the resulting configuration to find

work conserving reconfiguration plan.

xnp (t). It turns out that such a design gets stuck if the two-step
solution chooses to stay, even though it is possible to augment
the link capacities after reducing the sending rates for a few
steps. Also, when T is no longer a fixed (and tentatively small)
number, the assumption that N would remain a constant may
not be valid anymore, and the online algorithm would need to
deal with variable N(t). In sum, an online algorithm would
be useful, and it requires a more sophisticated design than a
straightforward generalization of Algorithm 2.

VI. SIMULATION

We compare our perseverance-aware Algorithm 2 with the
state-of-the-art churn-based RADWAN [3] through simula-
tions. In particular, we are interested in the following four
issues: the advantage of rate-adaptive links (Section VI-B), the
convergence pace under different perseverance levels (Section
VI-C), the mitigation of transition fluctuation (Section VI-D),
and the comparison of computation overhead (Section VI-E).

A. Simulation Setup

In the simulations, we consider the horizon T = 5 and the
perseverance level ρ = 0.5 as our baseline.1 Three methods
are simulated: the work conserving optimal solution (OPT),
Algorithm 2, and RADWAN, with COIN-OR CBC [8] as the
LP and MILP solver. RADWAN updates the network in one
shot by reconfiguring the links that will carry traffic exceeding
their original bandwidth. We set RADWAN’s churn trade-off
parameter ε = 0.1, which regulates the importance of churn
in optimization.2

We base our simulations on three different existing WAN
topologies, as shown in Fig. 5: Microsoft’s SWAN [7] (8
nodes, 12 links), Internet2 [9] (12 nodes, 18 links), and
Google’s B4 [10], [11] (18 nodes, 39 links). Each link has
100 Gbps initially, and according to the data in [3, Figure 1],
we assume that the maximum achievable capacity of a link l
is

cmax
l = 25

⌊
15(SNRl − 3) + 50

25

⌋
,

1We will justify the choice of the baseline parameters in Section VI-B.
2RADWAN [3] sets ε to 0.001, which emphasizes on the final throughput.

As we will evaluate the update disturbance in the following experiments, we
set ε = 0.1 to add more weight to churn reduction for a fair comparison.

(a) SWAN (8 nodes, 12 links) (b) Internet2 (12 nodes, 18 links)

(c) B4 (18 nodes, 39 links)

Fig. 5. The simulated network topologies. Each link has initial capacity 100
Gbps.

which maps 3 dB to 50 Gbps and 13 dB to 200 Gbps.
Each simulation consists of the following steps. We first

generate flows by selecting each source-destination pair with
probability 0.1. Under the initial link capacity 100 Gbps, we
compute the initial state to maximize the aggregate throughput.
We then randomly vary the SNR of each link to be uniformly
distributed within [7, 15] dB (and hence cmax

l ∈ [100, 225]
Gbps). With the new SNR, we run the algorithms to compute
the reconfiguration plans. In each experiment, we repeat the
simulation 1000 times to collect the statistics.

B. Advantage of Rate-Adaptive Links

The first question we would ask is whether having adaptive
links is beneficial in the presence of link reconfiguration delay.
Without reconfiguration delay, adaptive links allow the system
operator to augment the link rate, and hence the network can
transmit more data. However, link reconfiguration delay leads
to temporary bandwidth reduction, and it is less clear if we can
enjoy the bandwidth augmentation with controlled disruption
(specified by the perseverance level ρ).

To find out, we compare the methods with the most con-
servative choice – without adaptive links. This scenario is
similar to requiring no traffic disruption (ρ ≈ 1). In contrast,
RADWAN is much more aggressive as it augments the links
in one shot that might cause a significant impact on the traffic
(ρ ≈ 0). Our methods adopt a mild perseverance constraints
ρ = 0.5. Despite having the perseverance requirements that
ensure steadier reconfiguration than perseverance-agnostic ap-
proaches, Table I shows that our methods perform comparably
to RADWAN and improve the overall throughput by 40% to
50% for the no-adaptive-link cases.

C. Convergence under Different Perseverance Levels

The choice of horizon T determines the performance: The
RAP with a longer T searches a broader feasible region and

TABLE I
AVERAGE THROUGHPUT (Gbps) UNDER DIFFERENT WANS. OUR

METHODS (OPT AND Algorithm 2) BOOST THE THROUGHPUT BY 40% TO
50% WHILE ENSURING A MORE STEADY RECONFIGURATION PLAN.

topology
ρ ≈ 1 ρ = 0.5 ρ ≈ 0

w/o adaptive links OPT Algorithm 2 RADWAN†

SWAN 681.85 998.623 998.611 998.625

Internet2 1071.15 1510.13 1509.89 1510.15

B4 2621.12 3919.81 3919.14 3919.87
†We also simulate RADWAN with ε = 0.001, and the resulting average

throughput remains the same as ε = 0.1.

1 2 3 4 5 6 7 8 9 10

1,200

1,400

1,600

0.5

0.55

0.75

0.8

0.85 0.9

Step

T
hr

ou
gh

pu
t

(G
bp

s)

Fig. 6. Larger perseverance levels ρ (boxed values) prevent aggressive update
with large disturbance, and hence, it takes more steps for Algorithm 2 to
converge to the maximum throughput.

may land on the solutions with better throughput. However,
a longer T also burdens the solver with a more massive
load, which slows down the reconfiguration plan generation.
Therefore, we should choose an appropriate-sized T given the
perseverance level ρ.

Intuitively, a larger perseverance level leaves a smaller room
for traffic maneuver and hence leads to a more conservative
reconfiguration plan. As a result, it takes more steps to
converge to the best possible throughput. This phenomenon
is confirmed in Fig. 6, in which we apply Algorithm 2 for the
SWAN network with T = 10 and various perseverance levels
ρ.

We repeat the simulation in Fig. 6 1000 times and plot the
statistics in Fig. 7. If a case cannot converge to the maximum
throughput, we set its convergence step as 10. It turns out,
for ρ = 0.5, Algorithm 2 converges in 5 steps in 99% of the
cases, which inspires us to set the parameters accordingly.

Fig. 7 also reveals that as the perseverance level in-
creases, the minimum convergence steps grows super-linearly.
It matches the intuition: A higher ρ requires exponentially
more steps to move the traffic out of a link.

D. Mitigation of Transition Fluctuation

One major benefit of introducing the idea of perseverance
is to reconfigure in a “smoother” manner. We demonstrate

1 2 3 4 5 6 7 8 9 10
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95

Number of Steps for Convergence

Pe
rs

ev
er

an
ce

L
ev

el
ρ

Fig. 7. The 1st-5th-50th-95th-99th percentiles of the minimum number
of steps needed for throughput convergence. When ρ = 0.5, Algorithm 2
converges in 5 steps in 99% of the 1000 random cases.

the concept by the metric maximum throughput deviation. The
maximum throughput deviation is defined as

max

{∣∣∣∣∣∑
n∈N

xn(t)−
∑
n∈N

xn(t− 1)

∣∣∣∣∣ : t ∈ T
}
,

which captures the maximum throughput fluctuation during
the reconfiguration.

We plot in Fig. 8 the percentiles of maximum throughput
deviation under SWAN, Internet2, and B4 (each formed by
1000 random cases). As expected, RADWAN suffers huge
throughput deviation during the one-shot reconfiguration. The
optimal solution and Algorithm 2 have much smaller devia-
tions, only about 40% to 50%, than RADWAN. Algorithm 2
performs slightly better than the optimal solution. It is because
the optimal solution always converges with fewer steps than
Algorithm 2, and hence Algorithm 2 reconfigures slower with
smaller fluctuation.

Another noticeable trend is that the gap between RADWAN
and the other two methods becomes wider when the network
scales. It is because that a larger network with more flows leads
to more path diversity for moving traffic around, and hence the
perseverance-aware methods can potentially perform better.

E. Comparison of Computation Overhead

Although the performance of the optimal solution and
Algorithm 2 are comparable in throughput and maximum
throughput deviation, the required computation overheads dif-
fer a lot. Table II summarizes the average CPU computation
time to compute a reconfiguration plan in Fig. 8. Algorithm 2
uses only 22.2%, 8.0%, and 0.03% of time than OPT while
reaching similar performance under the three network topolo-
gies. Consequently, we claim Algorithm 2 provides a better
performance/computation-overhead trade-off than aiming for
the optimal solution directly.

We also argue that the computation overhead is acceptable
in practice. As reported in [3, Section 7.1], the current average
reconfiguration downtime is 68 seconds. Given the signifi-
cant mitigation of transition fluctuation as shown in Section
VI-D, it is worth spending some milliseconds to compute
a perseverance-aware plan using Algorithm 2. On the other
hand, [3] also mentions that the reconfiguration time could

OPT Algorithm 2 RADWAN

200 400 600 800 1,000 1,200 1,400

Maximum Throughput Deviation (Gbps)
(a) SWAN (8 nodes, 12 links)

400 800 1,200 1,600 2,000

Maximum Throughput Deviation (Gbps)
(b) Internet2 (12 nodes, 18 links)

1,000 2,000 3,000 4,000 5,000

Maximum Throughput Deviation (Gbps)
(c) B4 (18 nodes, 39 links)

Fig. 8. The 1st-5th-50th-95th-99th percentiles of maximum throughput
deviation under different networks. The gap between RADWAN and the other
two methods widens when the network has more nodes (and with more flows).

TABLE II
AVERAGE CPU COMPUTATION TIME (ms) AND FRACTION. ALGORITHM 2

USES MUCH LESS TIME AND SCALES BETTER THAN OPT.

topology OPT Algorithm 2 fraction
(
Algorithm2

OPT

)
SWAN 67.7 15.0 22.2%

Internet2 497.1 39.6 8.0%

B4 1.2 × 106 332.0 0.03%

potentially be reduced to 35 ms if not turning off the laser.
Once some new technology shortens the reconfiguration delay,
we might want to strive for even lower computation overhead
and new algorithm design.

VII. CONCLUSION

We investigate the rate adaptation planning (RAP) problem
under reconfiguration delay and introduce the perseverance
constraints to regulate the temporary disruption. With the
perseverance constraints, we formulate RAP in both discrete
control and MILP form. RAP is then shown NP-hard without
constant factor approximation (unless P=NP), which motivates
us to develop an LP-based heuristic algorithm. The simulations
show that the proposed algorithm converges quickly under
mild choices of perseverance level. It improves the overall
throughput by 40% to 50% comparing to the no-adaptive-
link case. Meanwhile, it gives a much smoother transition,

with only 40% to 50% maximum throughput deviation, than
RADWAN.

Besides perseverance, there are also some other metrics the
network operator might consider during the reconfiguration.
For instance, it might be preferable to sustain some throughput
level throughout the update. This objective is related to the
multi-step routing reconfiguration problems previously studied
in [7], [12], and it is possible to extend the existing methods to
generate a link update plan with throughput level guarantee.

ACKNOWLEDGEMENTS

We thank our shepherd Marco Chiesa and ICNP reviewers
whose comments helped us improve the paper.

REFERENCES

[1] X. Jin et al., “Optimizing bulk transfers with software-defined optical
WAN,” in Proc. ACM SIGCOMM, 2016, pp. 87–100.

[2] M. Ghobadi and R. Mahajan, “Optical layer failures in a large back-
bone,” in Proc. ACM IMC, 2016, pp. 461–467.

[3] R. Singh et al., “RADWAN: Rate adaptive wide area network,” in Proc.
ACM SIGCOMM, 2018, pp. 547–560.

[4] S. Jia et al., “Competitive analysis for online scheduling in software-
defined optical WAN,” in Proc. IEEE INFOCOM, 2017, pp. 1–9.

[5] R.-J. Essiambre et al., “Capacity limits of optical fiber networks,”
Journal of Lightwave Technology, vol. 28, no. 4, pp. 662–701, 2010.

[6] J. K. Fischer et al., “Bandwidth-variable transceivers based on four-
dimensional modulation formats,” Journal of Lightwave Technology,
vol. 32, no. 16, pp. 2886–2895, 2014.

[7] C.-Y. Hong et al., “Achieving high utilization with software-driven
WAN,” ACM SIGCOMM CCR, vol. 43, no. 4, pp. 15–26, 2013.

[8] CBC (COIN-OR branch and cut). [Online]. Available:
https://projects.coin-or.org/Cbc

[9] The Internet2 network. [Online]. Available:
http://www.internet2.edu/

[10] S. Jain et al., “B4: Experience with a globally-deployed software defined
WAN,” ACM SIGCOMM CCR, vol. 43, no. 4, pp. 3–14, 2013.

[11] C.-Y. Hong et al., “B4 and after: Managing hierarchy, partitioning,
and asymmetry for availability and scale in Google’s software-defined
WAN,” in Proc. ACM SIGCOMM, 2018.

[12] S.-H. Tseng et al., “Time-aware congestion-free routing reconfigura-
tion,” in Proc. IFIP Networking, may 2016, pp. 55–63.

